Linux TCG Software Stack
Low Level Design

Version 0.8 12

Kent Yoder
Linux Technology Center

Document owner: Kent E Yoder <yoder1@us.ibm.com>

Change Log

Version Date Comments
05/13/04 Initial revision
0.1 05/14/04 Added TCS/TSP key management info
Table of Contents, TCS key management example, TCS misc
0.2 05/16/04 functions
0.3 05/17/04 Formatting
04 05/28/04 Changes based on Tom Lendacky's review
Changes based on Emily Ratliff's review, typos and
05 06/01/04 formatting
Changes based on Kylie Hall's comments, added design issues
0.6 06/02/04 section, typos, clarification on key caching
0.7 06/04/04 Changes based on Emily Ratliff's 2nd Review
0.8 07/20/04 Changes based on review by the Security gurus
0.8r2 Updates based on code changes. Added TPM Auth manager
01/14/05 section.

Reviewers
Name Required/Optional

Emily Ratliff R LTC Security Team TPM project lead
Tom Lendacky R LTC Security Team
Doc Shankar 0] LTC Security Team
Danna Rother 0] Manager, LTC Security Team
Tony Abbatista 0] LTC Project Manager
Steve Bade 0] eServer Trusted Computing Architect
Lee Terrell (0] eServer /AIX Security Architecture and Design
Ravi Shankar 0] AIX Security Architect
Helmut Weber 0] eServer Platform Design & Architecture
Rich Guski 0] zSeries SW Security Architecture

1.0 Introduction

1.1 Overall Design Considerations
1.1.0 Threading Model
1.1.1 Globalization / Natural Language Support
1.1.2 Performance
1.1.3 Compatibility
1.1.4 Installation
1.1.5 Serviceability
1.1.6 Build
1.1.7 Dependencies
1.1.8 Testing Considerations
1.1.9 Documentation
1.1.10 Design Problems
1.1.11 Permissions

2.0 TSS Service Provider
2.1 Object Management
2.1.0 Data Structures
2.1.1 Object Creation Functions
2.1.2 Object Support Functions
2.2 Key Cache Management
2.2.0 Data Structures
2.2.1 Object Creation Functions
2.2.2 Support Functions
2.3 Cryptographic Services
2.3.0 Functions
2.4 Graphical User Interface
2.4.0 Functions
2.5 Memory Management
2.5.0 Data Structures
2.5.1 Functions
2.6 Persistent Storage
2.6.0 Functions
2.6.1 Key Registration Functions
2.7 TCS Calling Interface
2.8 Utilities

3.0 TSS Core Services
3.1 TCS Calling Interface
3.1.0 Data Structures
3.1.1 Functions
3.2 System Persistent Storage
3.2.0 Functions
3.3 TCS Context Handling

3.3.0 Data Structures
3.3.1 Functions
3.4 Event Handling
3.4.0 Data Structures
3.4.1 Functions
3.5 Key Cache Management
3.5.0 Data Structures
3.5.1Functions
3.6 TPM Auth Manager
3.6.0 Data Structures
3.6.1 Functions
3.7 Miscellaneous
3.7.0 Functions
3.8 TCSD Configuration file

4.0 Portability
5.0 References

1.0 Introduction

The TCG Software Stack (TSS) is the set of software components that supports an
application's use of a platform's TPM. The TSS is composed of a set of software modules and
components that allow applications to communicate with a TPM in several different ways.

The primary design goals of the TSS are (according to the TSS spec v1.1):

* Supply one entry point for applications to the TPM functionality
-Provided by the TSS Service Provider Interface

« Provide synchronized access to the TPM
-Provided by the TPM Request Manager (see section 3.1)

* Hide issues such as byte ordering and alignment from the application
-Provided internally by the TSS

* Manage TPM resources
-Provided by the TSS Core Services Daemon

The TSS is divided into modules which are intended to be independent subsystems
which communicate through interfaces defined in the TSS specification. Communication
between components inside each module is meant to be implementation specific and will not
affect callers of an API. The modules and components are represented in the following diagram:

P o

Scermen 1 Scanasc I

| Local Appllcation | | Local Appllcation
F 3 [

Cryplographic
Inmstuoiie inetane

Iy aph ic

w
TS5 Senice Piowder (])
ro—————— - oro

I TEF Cantext § 1 Cryplographic :
| Mamager 1§ Funslions g
[o e

Key & Credertial Evert Audil TFM Parameter Block
Gontiad Marmger e e Maragar IManager Generalor
TPM Deves Onve Lprayinietoge ___ _ _ S

TCPA Desice Oriver Lisrery (3) |

Ik Ticaces
Syl P s N Ther Breeomms

h 4
| TPM Desdee O heer (4) |

Trusted Platform Module [TPM)

£
£
JL

Figure 1.0: Interaction of the pieces of the TSS Software Stack. (1) TSS Service Provider, (2) TSS
Core Services, (3) TCPA Device Driver Library, (4) TPM Device Driver

The modules that make up the TSS are the (1) TSS Service Provider (TSP) (see section

2.0), the (2) TSS Core Services (TCS) (see section 3.0), the (3) TCPA Device Driver Library (TDDL)
and the (4) TPM Device Driver. The three pieces this low-level design will cover are the TSS
Service Provider shared library, the TSS Core Services daemon and the TCPA Device Driver
Library. The TCPA Device Driver Library is implemented by this TSS, but contains no additional
functions other than those specified in the TSS 1.1 API. The TPM device driver itself will be
maintained separately from this TSS and therefore will not be discussed in this low-level design.
The following is a diagram of the interaction of the three pieces of the TSS at a high level:

Local Platform Remote Platform
Local Process Remote Process

(1) TSS Service Provider (1) TSS Service Provider]

Shared Library Shared Library

i T RPC

Q
(2? TSS Core rpc T
Services Daemon <
(3) TCPA Device Driver
Library
TPM

Figure 1.1: Interaction of the pieces of the TSS Software Stack implemented by functions in this
document.(1) TSS Service Provider, (2) TSS Core Services, (3) TCPA Device Driver Library.

Local Platform Remote Platform

Remote Process

Local Process ¢ ?

—— TSP interface
IS élti erface (D 1ibtspi.so
() !ibtspi.so RPC
N
TCS interface
(2)tcsd RPC
TDDL interface
(3) libtddl.a

o

Figure 1.2: Interface interactions between the pieces of the TSS. (1) TSS Service Provider, (2) TSS
Core Services, (3) TCPA Device Driver Library.

The current high level design of the Linux TCG Software Stack (HLD-
TrustedComputingReferencelmplementationv21.doc) documents the changes that would be
made from the original PCD code base in section 4 of that document, so some detail which is
not included here can be found there. Also, please refer to the TSS 1.1 specification as a
companion document to this low level design.

1.1 Overall Design Considerations

The following sections describe details of the TSS project's overall design.
1.1.0 Threading Model

In keeping with the high level design document mentioned in section 1.0, the threading
library used will be the POSIX pthreads library. pthreads will be used in both the TSP shared
object and the TCS daemon. In the TSP, pthread mutexes will protect shared data structures
from access by multiple threads in the user's application. In the TCS daemon, a new thread will
be spawned when a request arrives so that the daemon can continue listening for new requests
while the previous one is being processed. pthreads routines will be used to handle these
threads and protect any shared data structures.

The maximum number of threads allowed to be running simultaneously in the TCS
daemon will be configurable at build time and at run time through a configuration file. The TCS

daemon will re-read its configuration file when sent the SIGHUP signal, allowing the parameter
to changed without restarting the TCS daemon.

1.1.1 Globalization / Natural Language Support

NLS support will be enabled through the gettext package. Translation catalogs for
languages other than English will not be provided, but will be accepted from the community.

1.1.2 Performance

The LTC-TSS can be optionally configured with - - enabl e- per f to link to gprof
libraries for profiling. Once test case development is complete, the test suite will be run with
profiling of the TSS enabled. At this point, performance related issues will be identified. The
performance of all internal routines will be considered at this time and solutions to any
performance problems will be made prior to release.

1.1.3 Compatibility

Compatibility with other TSS stacks will be given all possible consideration. Based on
proposals by the TSS Working Group, the design/implementation of the LTC-TSS may need to
be changed to ensure compatibility. Any revisions of the TSS 1.1 spec by the TSSWG will be
integrated into the LTC-TSS and any TSS 1.2 spec design considerations that can be applied to
this 1.1 based stack will be implemented. For instance, it is expected that the RPC design
accepted by the TSSWG for the TSS 1.2 spec will be widely implemented as the RPC design for
most 1.1 TSS's, despite the fact that there is no RPC design specified in the 1.1 spec. For
compatibility, the 1.2 RPC design will be implemented in this TSS. If the 1.2 design cannot be
approved in time for the release of this TSS, the implementation will be based on the current
standing TSS 1.2 draft.

1.1.4 Installation

Installation of the TSP shared library will be to the / usr/ | i b directory, with the t csd
executable residing in/ usr/ sbi n. Files specific to a distribution will be installed wherever
appropriate, for instance the NLS files and t csd startup script locations may vary. These
variations will be reflected in the per-distribution RPM's, which will be available for all
supported distributions (RedHat Enterprise Linux and SuSE Linux Enterprise Server). Separate
RPM's will be available providing the documentation for this package, as is customary with
SuSE and RedHat packages.

Although the specific locations of the files to be included in the TSS are listed in this
low-level design, alternate locations are certainly acceptable. No design decisions will be made
which will necessitate specific locations for any files.

1.1.5 Serviceability

Message logging will be configurable through sysl ogd for all log levels that sys| ogd
supports. Separate binary RPM's will be provided with and without debug level messages, so
that a configuration error (turning debug level messages on) cannot expose sensitive data. No
sensitive data will be logged to any level other than debug.

Once the LTC-TSS is released by IBM externally (presumably on developerWorks or
sourceforge.net), support channels will be set up through that particular website. Users will be

able to post bugs, join mailing lists, supply patches and download updates through these
channels. Support will be given to anyone through these channels, however support contracts
specific to IBM products will also be made available as resources allow.

1.1.6 Build

An automake and autoconf build environment will be provided as part of a CVS or
tarball source code release. Full documentation on the build itself will be provided as part of
these releases.

1.1.7 Dependencies

The utmost consideration will be given to keeping dependencies for the TSP's shared
library and the tcsd to an absolute minimum. Existing dependencies are the libc library,
OpenSSL's libcrypto, the pthreads library, a SOAP library and any libraries needed for GUI
development. Since the list of libraries needed for the GUI can be quite long, every effort will be
taken to minimize it.

It is important to note that these dependencies will not be the same on all platforms.
For instance the crypto implementation has been designed so that other crypto interface
libraries can be easily plugged in to the TSS at build time. Please see section 2.3 for more
information on the pluggable crypto implementations.

1.1.8 Testing Considerations

A complete TSS 1.1 API test suite will be developed concurrently with the TSS. Once
completed, the test suite will be integrable with the Linux Test Project's automated test
environment. (The tests developed can also be run stand-alone). Once development of the
stack is near completion, a daily run of the API test suite will be used to identify bugs. The test
suite will be released separately from the TSS stack, available for download as a patch to the LTP
tarball, as a tarball itself or from CVS. Included in the test suite package will be the TSS API
programming reference and documentation for the LTC-TSS.

The test suite will interface to the TSP, which will then interact with the TCS interface
which in turn interacts with the TPM through the TDDL interface. In this way all three
interfaces will be tested. No tests specific to the TCS or TDDL interfaces will be written.

1.1.9 Documentation

A full APT and programming reference as well as build and install documentation will be
provided with the LTC-TSS. The API and programming reference will be packaged with the test
cases (except where released in RPM form), while build and install information will be released
with any source code release of the LTC-TSS.

1.1.10 Design Problems

The TPM spec mandates that RSA encrypted blobs will be padded using an OAEP
padding parameter of the NULL terminated string “TCPA”. In the existing OpenSSL
implementation of RSA encryption, it is not possible to specify the OAEP padding parameter. In
order to set this parameter (and thereby decrypt data form a TPM), a change to OpenSSL will be
required. Other cryptographic service providers may have a similar problem.

There are several different callbacks an application can register with the TSS.
Unfortunately, the TSS 1.1 spec specifies that the addresses of these callback functions be set by
the Tspi _Set Attri bUi nt 32() function, who's parameter is only 32bits long. This makes
setting a callback function impossible on a 64bit platform. In order to fix this problem, a
Tspi _Set Attri bU ong64() will be defined and used solely to set 64 bit attributes of objects.
This is still in compliance with the TSS 1.1 spec, which states in section 1.3 that “The addition of
any functions do not exclude a TSS implementation form <sic> being considered a valid
implementation.”

When the TSS specification was created, its use was considered mainly in an
environment with a GUI available. This led to the decision that by default, a policy object is set
to spawn a popup window to receive authorization data. This becomes a problem on platforms
where no GUI is available. To solve this problem, the LTC-TSS will allow an administrator to set
the default policy for secret modes to be either popup, plaintext, SHA1 or callback. This option
can be set in the TCSD's configuration file.

1.1.11Permissions

The file access permissions will be set as follows:

File User ID Group ID Permissions Purpose
tcsd tss tss -TWX------ TSS Core Services Daemon
libtspi.so r oot r oot - -Xr-xr-x | TSS Service Provider shared
library
system dat a tss tss STW---- - TCSD Persistent Storage file
user.{pid} process_pid process gid -rw------ Per-process User Persistent

Storage files

/var/tpm tss tss drwrwrw Directory which will
contain all Persistent
Storage files

The TSS Core Services Daemon will be set to a unique, non-root UID (here named t ss),
to avoid making the system as susceptible to remote attacks.

Since any application should be able to link to the TSP interface, it is given user, group
and other permission to read and execute.

The system persistent storage file, syst em dat a, should only be readable by the TCSD,
so its mode is restricted to 0600, and its user and group ID's are set to that of the TCSD.

The user persistent storage files, shown above as user . { pi d}, should only be readable
and writable by the user who's process created them. Therefore its mode is restricted to 0600
and its user and group ID's are set to that of the creating process. Its worthwhile to note that
although child processes of a process that creates a persistent store do not inherit their parent's
persistent store, there is no reason to restrict their access to the parent's persistent storage file.

The directory where all persistent storage files are written (by default/ var/ t pm is
readable and writable by user, group and others, with the sticky bit on. This will ensure that
although all users can write their persistent storage files to this directory, users cannot overwrite
or delete other user's files.

10

2.0 TSS Service Provider

The TSS Service Provider is implemented as a C shared library (and optionally a static
library) that links to the user's application. The TSP provides internal object management for
keys, data blobs and all other types of objects, as well as a transparent interface to one or more
TCS daemons and an interface to user persistent storage. The TSP also provides the user
interface component for authentication data, an interface to the generic cryptographic routines
(used internally) and a key caching mechanism.

2.1 Object Management

All TSP objects are maintained in one global linked list per process'. This list is updated
and maintained as the application makes its API calls during its lifetime. When an application
makes an API call that requires an object to be created, everything that is known about that
object at object creation time is filled out. Subsequent API calls will complete the object's
description and perhaps create the actual object at a later time. For example, if an application
calls Tspi _Cont ext _Cr eat eCbj ect () to create a policy object, the new object will be created
internally to the TSP with type TSS_OBJECT_TYPE_PCLI CY and several default attributes. This
object is added to the global liked list and is thus added to the TSP's management system.
Subsequently the user may call Tspi _Set At t ri bUi nt 32() to set the policy's secret mode or
secret lifetime. The default values would then be overwritten in the TSP's object (which
contained default values). Finally the user would call Tspi _Pol i cy_Assi gnToChj ect () to
associate the new policy with some object (usually an RSA key). The TSP's internal policy object
would then have a pointer to the requested object assigned in the policy object, thereby
associating it with the target object.

2.1.0 Data Structures

AnQbj ect - include/spi_internal_types.h
Each object created through the TSP exists in an entry in a linked list. Each entry in the
list is an AnObj ect structure. The AnQbj ect structure contains all generic object
attributes such as size, type and the TSP and TCS contexts it may tie to. It also contains a
pointer to the object itself.

AnQbj ect AnObj ect
head —) TYPE: POLICY — P TYPE RSAKEY —p
[other attrs] [other attrs]
TCPA_PCLI CY_OBJECT TCPA _RSAKEY_ OBJECT

Figure 2.1.0: A sample object list

2.1.1 Object Creation Functions

1 recognized as possible performance bottleneck. Implementations may be changed to work
around any performance problems uncovered.

11

addoj ect - tspi/obj.c
Synopsis:
TSS HOBJECT addObj ect (Ul NT32 cont ext Handl e, Ul NT32
obj ect Type)

Description:
addObj ect addsanew object to the internal list of objects managed by the TSP.
cont ext Handl e isaTCS context handle, or 0 if aconnection to a TCS does not yet
exist. obj ect Type isthetype of TSP object to be created.

Return Vaue:
addNbj ect returnsthe handle to the newly created object.

Synchronization;
The TSP's object lock is held while the new object is added to the list.

Errors:
If an error occurs, NULL_HOBJECT isreturned to the calling function.

set Qbj ect —tspi/obj.c
Synopsis:
TSS RESULT set Obj ect (TSS _HOBJECT obj ect Handl e, void *buffer,
U NT32 sizeOBuffer)

Description:

set Obj ect setstheinternal memory pointer of the TSP context obj ect Handl e.
The TSP context's memory pointer is set to buf f er and the size of the buffer is set to
sizeOf Buffer.

Return Value:
On success, TSS_SUCCESS isreturned.

Synchronization:
The TSP's object lock is held while the new object is modified.

Errors:
If obj ect Handl e isaninvalid TSP object handle, set Cbj ect returns
TSS_E_| NVALI D_HANDLE.

creat eCbj ect —tspi/obj.c

Synopsis:
AnQhj ect *createbject()

Description:
creat eCbj ect calscal | oc to createanew AnQhj ect structure. The structureis
freed either when an application calls Tspi _Cont ext _C osebj ect (), or
Tspi _Context _C ose().

Return Value:
On success, a reference to the newly created object is returned.

Synchronization:

12

None.

Errors:
If cal | oc fails, NULL isreturned and an error islogged.

2.1.2 Object Support functions

get Next Cbj ect Handl e — tspi/obj.c

Synopsis:
TSS HOBJECT get Next (bj ect Handl e()

Description:
get Next Obj ect Handl e returnsthe next available TSP object handle.

Return Values:
The next available TSP object handle is returned.

Synchronization;
None.

Errors:
None.

i nt er nal _Cet Cont ext Cbj ect For Cont ext — tspi/obj.c
Synopsis.
TSS RESULT i nternal _Get Cont ext Qbj ect For Cont ext
(TCS_CONTEXT_HANDLE t csContext, TSS HCONTEXT * tspContext)

Description:
i nt ernal _Get Cont ext Obj ect For Cont ext searchesthrough thelist of TSP
contexts until it finds one whose TCS context matchest csCont ext . Onceit findsa
match, *t spCont ext isset to the value of the matching TSP context.

Return Values:
On success, TSS_SUCCESS is returned.

Synchronization:
The TSP's object lock isheld while the list is searched.

Errors:
If amatching context is not found, TSS_E_| NVALI D_HANDLE isreturned.

i nt er nal _Cet Cont ext For Cont ext Cbj ect —tspi/obj.c
Synopsis:
TSS _RESULT i nt er nal _Get Cont ext For Cont ext Obj ect (TSS_HCONTEXT
hCont ext, TCS_CONTEXT_HANDLE * handl eCut)

Description:
i nt ernal _Get Cont ext For Cont ext Cbj ect setsthevalue of *handleOut to the
TCS_CONTEXT_HANDLE structure which matches the TSP context hCont ext .

Return Vaues:
On success, TSS_SUCCESS isreturned and *handl eQut isset.

13

Synchronization:
Callsget Anbj ect ByHandl| e() , which will hold the TSP object lock while
searching the list.

Errors:
If hCont ext isnotfound, TSS_E | NVALI D HANDLE isreturned.

obj _get Pol i cyOf Qbj ect — tspi/obj.c
Synopsis:
TSS _HOBJECT obj _Get Pol i cyOf Ohj ect (TSS_HOBJECT obj ect Handl e,
Ul NT32 policyType)

Description:
obj _Get Pol i cyOr Obj ect returnsthe policy object associated with TSP object
obj ect Handl e and of policy type pol i cyType. If obj ect Handl e isahandleto
an object that has no policy associated with it, O is returned.

Return Values:
On success, the policy object that is requested is returned.

Synchronization:
Callsget Anbj ect ByHandl| e() , which will hold the TSP object lock while
searching thelist.

Errors:
If obj ect Handl e isahandle to an object that has no policy associated withit, Ois
returned

obj _get Cont ext For Qbj ect —tspi/obj.c
Synopsis:
TCS_CONTEXT_HANDLE obj _get Cont ext For Obj ect (TSS_HOBJECT
obj ect Handl e)

Description:
obj _get Cont ext For Cbj ect returns the TCS context associated with the TSP
context obj ect Handl e.

Return Values:
On success, the TCS_CONTEXT_HANDLE requested is returned.

Synchronization:
Callsget Anbj ect ByHandl| e() , which will hold the TSP object lock while
searching the list.

Errors:
If obj ect Handl e doesnot exist, NULL_TCS_HANDLE is returned.

obj _get TpnDbj ect - tspi/obj.c

Synopsis:
TSS_RESULT obj _get Tpnhj ect (TCS_CONTEXT_HANDLE t csCont ext
TSS HOBJECT * out)

Description:

14

obj get TpnObj ect searchesthe TSP context list for a TPM object that is associated
with TCSt csCont ext . If the search finds an object, the value of *out issetto it and
TSS SUCCESS isreturned.

Return Values:
On success, TSS_SUCCESS isreturned.

Synchronization:
Callsget Anbj ect ByHandl| e() , which will hold the TSP object lock while
searching the list.

Errors:
If t csCont ext isnot an existing TCS context handle or there are no objects of type
TSS_OBJECT_TYPE_TPM TSS_E_| NVALI D_HANDLE isreturned and * out isnot
touched.

get Qbj ect TypeByHandl e - tspi/obj.c

Synopsis:
U NT32 get Obj ect TypeByHandl e(TSS_HOBJECT obj ect Handl e)

Description:
get Obj ect TypeByHandl e searchesthe TSP's object list for obj ect Handl e and
returns that object's type.

Return Values:
On success, the type of object obj ect Handl e isreturned.

Synchronization:
Callsget Anbj ect ByHandl| e() , which will hold the TSP object lock while
searching the list.

Errors:
If obj ect Handl e isnot avalid TSP object handle, NULL_ HOBJECT isreturned.

dest r oyQbj ect sByCont ext — tspi/obj.c

Synopsis:
voi d destroyObj ect sByCont ext (TCS_CONTEXT_HANDLE t csCont ext)

Description:
destroy(bj ect sByCont ext searchesthrough the TSP'slist of objects, removing

each one that's bound to the TCS represented by t csCont ext . If no objects are bound
tothe TCS represented by t csCont ext , ho action is taken.

Return Vaues:
None.

Synchronization:;
Holds the TSP object lock while searching the list.

Errors:
None.

removeQbj ect — tspi/obj.c

15

Synopsis:
voi d renpoveCbj ect (TSS_HOBJECT obj ect Handl e)

Description:
renove(hj ect searchesthe TSP'slist of object for objet handle obj ect Handl e and
removes that object from itslist. If no object has the handle obj ect Handl e, no action
istaken.

Return Vaues:
None.

Synchronization:
Holds the TSP object lock while searching the list.

Errors:
None.

dest r oyCbj ect - tspi/obj.c

Synopsis:
voi d destroyOhj ect (AnChj ect *obj ect)

Description:
destroyOhj ect frees memory associated with the AnCbj ect structure.

Return Vaues:
None.

Synchronization:
None.

Errors:
None.

get Qbj ect —tspi/obj.c

Synopsis:
TCPA RESULT get Obj ect (TSS _HOBJECT obj ect Handl e, void
**out Buffer, U NT32 * outSize)

Description:
get Obj ect searchesthe TSPsinternal list of objectsfor obj ect Handl e and
returned references to that object and its size.

Return Vaues:
On success, * out Si ze is set to the size of the found object, * out Si ze bytesare
mal | oc'dfor * out Buf f er and a copy of the requested object is copied into
*out Buf f er. TSS_SUCCESS isthen returned. The caller is expected to handle
freeing of the object returned in out Buf f er .

Synchronization;
Callsget An(hj ect ByHandl e() , which will hold the TSP object lock while
searching thelist.

Errors:
If mal | oc fails, TSS_E_OUTOFQOVEMCORY isreturned. If obj ect Handl e does not

16

exist, TSS_E | NVALI D_HANDLE is returned.

concat Obj ect s —tspi/obj.c

Synopsis:
AnChj ect *concat Obj ect s(AnChj ect ** first, AnObject *second)

Description:
concat Obj ect s appends the object pointed to by second immediately after the object
pointed to by first in the TSP'sinternal list of objects.

Return Values:
*first isawaysreturned.

Synchronization:
The TSP object lock is held while manipulating the list.

Errors:
None.

2.2 Key Cache Management

At the TSP level, the data structure used to keep track of loaded (cached) keys is based
on the key's parent. (Here “loaded” is in the TSS sense of the word, meaning ready to use by a
TSS application). Since each key loaded by the TSP was loaded in reference to a wrapping key
(which ultimately led back to some key resident in the TCS), a list of linked lists is maintained in
the TSP where the head of each list contains the wrapping key handle. All TSP keys created
which had a certain wrapping key as its parent are then added to the list descending from that
wrapping key's list head. A data structure such as the following will be built as keys are created:

WrappingKey, WrappingKey,

Figure 2.2a: TSP Key Cache objects. WrappingKey, is an object internal to the TSP that contains
the key handle of the key used to wrap Key, and Key,. Likewise, WrappingKey; was used to wrap
Key, when it was created. These lists are strictly used for accounting of currently loaded keys,
there is no direct link between the object list and this list (see figure 2.2b).

The above objects are very simple linked lists containing only a key handle and a

17

pointer to the next list. The purpose of this data structure is merely to keep track of which keys
are loaded at a given moment in the TSP. When the user calls Tspi _Key_LoadKey() or
Tspi _Key_Unl oadKey(), this data structure would be updated.

The object manager and key cache work together in the following way. When an
application wants to create a new key, it calls Tspi _Cont ext _Cr eat eCbj ect () with
arguments to create an object of type TSS_OBJECT_TYPE_RSAKEY.

Tspi _Cont ext _Cr eat eObj ect () internally calls addObj ect (), which creates the object and
sets the TSP context and object type (implicitly, policy objects are also created for the RSA key
for both migration and usage). Tspi _Cont ext _Cr eat eCbj ect () then allocates and
completes as much of a TCPA_RSAKEY_OBJECT as it can. (Since the key data is not yet known,
it cannot be filled out, but the key's attributes are passed in, and so are already known). When
the user then calls Tspi _Key_Cr eat eKey(), passing in the handle to the created RSA key
object, it does some sanity checking of the handle (and the policies for the key with that handle)
and calls the TCS daemon to create the key. Once the call from the TCS daemon returns with
the key data, that data is copied into the object's TCPA_RSAKEY_OBJECT structure and the key
object creation is finished. The key is not yet in the TSP's key cache, however. Once the user
calls one of the XX_LoadKey functions, addKeyHandl e() is called and the key is considered
cached.

App TSP
time
Tspi_Context_CreateObject()
Anhj ect
Type: RSA key 4’D
47
Tspi_Key_CreateKey()
AnChj ect
Type: RSA key 4’.
<
Tspi_Key_LoadKey()
Anhj ect > .
Type: RSA key
F'N

v N TSP key
cache entry
4

|:| - incomplete TCPA RSAKEY_OBJECT

. - complete TCPA_RSAKEY_ OBJECT

Figure 2.2b: TSP Key creation. The dotted arrow linking the cache entry to the object represents
the fact that there is no direct memory reference between the two, but both entities contain a
handle to the same key.

2.2.0 Data Structures

TSPKeyHandl eCont ai ner - include/spi_internal_types.h

18

TSPKeyHandl eCont ai ner isused to create the linked list of TSP key handles associated with
each TCSKeyHandl eCont ai ner .

TCSKeyHandl| eCont ai ner - include/spi_internal_types.h

TCSKeyHandl eCont ai ner isalist of TCS keysthat the TSP has knowledge of. For each key
that the TSP creates, a TSPK eyHandleContainer is added to the TCSK eyHandleContainer for that key's
parent. (Seefigure 2.2)

2.2.1 Object Creation Functions

cr eat eTSPKeyHandl eCont ai ner —tspi/obj.c

Synopsis:
TSPKeyHandl eCont ai ner *cr eat eTSPKeyHandl eCont ai ner ()

Description:
cr eat eTSPKeyHandl eCont ai ner cal | oc's spacefor anew TSP key cache entry.
The entry is freed when the corresponding key object is destroyed.

Return Values:
On success, areference to the key cache entry is returned.

Synchronization:
None.

Errors:
If cal | oc fails, an error islogged and NULL is returned.

cr eat eTCSKeyHandl eCont ai ner — tspi/obj.c

Synopsis:
TCSKeyHandl eCont ai ner *creat eTCSKeyHandl eCont ai ner ()

Description:
cr eat eTCSKeyHandl eCont ai ner cal | oc's spacefor anew TCS key cache entry.
The entry is freed when the corresponding key object is destroyed.

Return Values:
On success, areference to the key cache entry is returned.

Synchronization:
None.

Errors:
If cal | oc fails, an error islogged and NULL is returned.

2.2.2 Support Functions

concat TSPKeyHandl eCont ai ner — tspi/obj.c
Synopsis:
TSPKeyHandl eCont ai ner *concat TSPKeyHandl eCont ai ner
(TSPKeyHandl eCont ai ner ** first, TSPKeyHandl eCont ai ner
*second)

19

Description:
concat TSPKeyHandl eCont ai ner appendsthe object pointed to by second
immediately after the object pointed to by first in the TSP'sinternal TSP key cache.

Return Values:
*first isawaysreturned.

Synchronization:
The TSP key cache lock is held while manipulating the list.

Errors:
None.

renoveTSPKeyHandl e - tspi/obj.c

Synopsis:
voi d renpveTSPKeyHandl e(TSS HKEY t spHandl e)

Description:
r enove TSPKeyHand| e removesthe TSP key referenced by t spHandl e. If
t spHandl e doesnot exist, no action is taken.

Return Vaues:
None.

Synchronization:;
The TSP key cache lock is held while manipulating the list.

Errors:
None.

concat TCSKeyHand| eCont ai ner - tspi/obj.c
Synopsis:
TCSKeyHandl eCont ai ner *concat TCSKeyHandl eCont ai ner
(TCSKeyHandl eCont ai ner ** first, TCSKeyHandl eCont ai ner
*second)

Description:
concat TCSKeyHandl eCont ai ner appendsthe object pointed to by second
immediately after the object pointed to by first in the TSP'sinternal TCS key cache.

Return Values:
*first isawaysreturned.

Synchronization:
The TSP key cache lock is held while manipulating the list.

Errors:
None.

get TCSKeyHandl eCont ai ner ByTCSHand| e - tspi/obj.c

Synopsis:
TCSKeyHandl eCont ai ner *get TCSKeyHandl eCont ai ner ByTCSHandl e

(TCS_KEY_HANDLE t csHandl e)

Description:
get TCSKeyHandl eCont ai ner By TCSHandl e searchesthrough the TSP's key
cache for for the key cache container whose TCS key handle matchest csHandl e.

Return Values:
On success, a reference to the key cache container requested is returned.

Synchronization;
The TSP key cache lock isheld whilethelist is searched.

Errors:
If t csHandl e isnot avalid TCS key handle, NULL isreturned.

addKeyHandl e - tspi/obj.c
Synopsis:
TSS RESULT addKeyHandl e(TCS_KEY_HANDLE tcsHandl e, TSS HKEY
t spHandl e)

Description:
addKeyHandl e createsanew TSP key cacheentry boundtot spHandl e. If akey
cache container already existsfor the TCS t csHandl e, the new TSP key cache entry is
added to that, otherwise anew TCS key cache entry is created for t csHandl e.
Allocated memory will be freed if the application explicitly calls
Tspi _Cont ext _Cl oseObj ect (), Tspi _Cont ext _C ose() orif thekeyis
evicted.

Return Values:
On success, TSS_SUCCESS isreturned.

Synchronization:
The TSP key cache lock is held while the new item is added.

Errors:
If mal | oc fails, TSS_E_OUTOFMEMORY isreturned, and an error is logged.

removeTCSKeyHandl e —tspi/obj.c

Synopsis.
voi d removeTCSKeyHandl e(TCS_KEY_HANDLE t csHandl e)

Description:
r enove TCSKeyHand| e searchesfor the TCS key cache container that matches
t csHandl e and removesit. All TSP key cache handles that were associated with the
removed TCS key cache container are removed as well.

Return Vaues:
None.

Synchronization:;
The TSP key cache lock is held while manipulating the list.

21

Errors:
None.

get TCSKeyHandl e —tspi/obj.c

Synopsis:
TCS_KEY_HANDLE get TCSKeyHandl e(TSS_HKEY t spHandl e)

Description:
get TCSKeyHandl e searchesthe TSP key cachelistt spHandl e and returnsthe TCS
key handle associated with it.

Return Values:
On success, get TCSKeyHandl e returns the TCS key handle requested.

Synchronization:
The TSP key cache lock isheld while the list is searched.

Errors:
If no key handle matchest spHandl e, NULL_TCS_HANDLE is returned.

2.3 Cryptographic Services

Cryptographic services are provided by a cryptographic library implementing the
functions below (section 2.3.0). Crypto implementations will be found in their own directories
under t spi / cr ypt o, the current implementation being provided by openssl, in
t spi / crypt o/ openssl . The decision on which library will be the cryptographic provider will
be made at build time, based on which library is available.

Adding a new crypto implementation should be fairly straightforward:

1) Create a new directory, e.g. sr ¢/ t spi / crypt o/ nyCrypt o.

2) Inside this directory, add a file named 'cr ypt 0. ¢' which implements the functions in section
2.3.0

3) Add a check in configure.in for your crypto library and headers (see the openssl section of
confi gure. in for an example). Make sure that the build system sets the variable
“CRYPTO_PACKAGE?” to the name of the directory you created in step 1. At build time,
src/tspi/crypto/ $CRYPTO PACKAGE/ cr ypt o. ¢ will be built.

One hurdle to implementing the cryptographic operations needed to interact with a
TPM is the fact that the TPM requires the OAEP padding parameter of RSA encrypt/decrypt
operations to be set to the NULL terminated string “TCPA”.

2.3.0 Cryptographic functions

TSS_Hash - tspi/crypto/$CRYPTO_PACKAGE/crypto.c
Synopsis:
TCPA_RESULT TSS_Hash(Ul NT32 HashType, U NT32 Buf Si ze, BYTE
*Buf, BYTE * Digest)

Description:
Compute the hash value of the data pointed to by Buf . The hash algorithm to be used is
specified by HashType. Thelength of the input buffer is specified by Buf Si ze and
Di gest isthelocation where the resulting hash value will be written. It is assumed that
Di gest pointsto enough bytesto hold the resulting hash.

22

Return Vaues:
On success, the hash iswritten to Di gest and TSS_SUCCESS is returned.

Synchronization:
None.

Synchronization;
None.

Errors:
If HashType isnot asupported type, TSS E BAD PARAMETER isreturned. If acall
to the underlying crypto library fails, TSS_E | NTERNAL ERROCRIs returned and the
underlying crypto library's error printing functions are invoked.

TSS_HVAC - tspilcrypto/$CRYPTO_PACKAGE/crypto.c
Synopsis:
U NT32 TSS HMAC(Ul NT32 HashType, U NT32 SecretSize, BYTE*
Secret, U NT32 Buf Size, BYTE* Buf, BYTE* hnacCQut)

Description:
TSS HVAC computes the HMAC of the data at Buf based on the hash agorithm
HashType. Buf Si ze should be the number of bytes pointed to by Buf .
Secr et Si ze should be the size of the secret passed in at location ~ Secret. The
resulting HMAC will be written to the address pointed to by hmacQut . It is assumed
that that hmacQut points to enough bytes to hold the resulting HMAC.

Return Values:
On success, the HMAC iswritten to hmacQut and TSS_SUCCESS is returned.

Synchronization:;
None.

Synchronization:
None.

Errors:
If HashType isnot asupported type, TSS E BAD PARAMETERIs returned.

TSS_RSA_Encrypt - tspilcrypto/$CRYPTO_PACKAGE/crypto.c
Synopsis:
int TSS_RSA Encrypt (unsi gned char *dataToEncrypt, unsigned
i nt dataToEncryptLen, unsigned char *encryptedData, unsigned
i nt *encrypt edDat aLen, unsigned char *publicKey, unsigned
i nt keysi ze)

Description:
TSS RSA Encrypt encryptsdat aToEncr ypt Len bytes pointed to by
dat aToEncr ypt using the key datapubl i cKey. Thesizeof publ i cKey is
specified by keysi ze. Theresulting encrypted datais writtento encr ypt edDat a and
*encr ypt edDat aLen isset to the number of encrypted bytes written.

Data passed to TSS_RSA _Encr ypt will be encrypted using PKCS#1 OAEP padding
and a public exponent of 3.

23

Return Vaues:

On success, * encr ypt edDat aLen is set to the number of encrypted bytes written to
encr ypt edDat a and TSS_SUCCESS is returned.

Synchronization:;
None.

Errors:
If the RSA key object cannot be created dueto anal | oc failure,
TSS _E OUTOFMEMORY isreturned and none of the input parameters are touched. |If
callsto the the underlying crypto library fail, TSS_E | NTERNAL ERROR isreturned.

TSS_Verify -—tspilcrypto/$CRYPTO_PACKAGE/crypto.c
Synopsis:
int TSS Verify(U NT32 HashType, BYTE *pHash, Ul NT32

i HashLengt h, unsi gned char *pModul us, int iKeylLength, BYTE
*pSi gnature, U NT32 sig_|len)

Description:
TSS Verify decryptsthesignatureat pSi gnat ur e using the key pModulus and
comparestheresult to pHash. i HashLengt h should be the length of the data at

pHash andi KeyLengt h should be the length of the key. Currently the only supported
HashType isTSS HASH SHA1.

Datapassedto TSS Veri fy will be decrypted using PKCS#1 OAEP padding and a
public exponent of 3.

Return Vaues:

On success the result of the comparison between pHash and the decryption operation will
be returned.

Synchronization:
None.

Errors:
If the RSA key object cannot be created dueto anal | oc failure,
TSS _E OUTOFMEMORY isreturned and none of the input parameters are touched. |If
callsto the the underlying crypto library fail, TSS_E | NTERNAL ERROR isreturned.

TSS_RSA _PKCS15_Encrypt - tspilcrypto/$CRYPTO_PACKAGE/crypto.c
Synopsis:
int TSS_RSA PKCS15 Encrypt (unsi gned char *dataToEncrypt,
unsi gned int dataToEncryptLen, unsigned char *encryptedDat a,
unsi gned int *encryptedDat aLen, unsigned char * publicKey,
unsi gned int keysize, BYTE* seed);

Description:
TSS RSA PKCS15 Encrypt encryptsdat aToEncr ypt Len bytes pointed to by
dat aToEncr ypt using the key datapubl i cKey. Thesizeof publ i cKey is
specified by keysi ze. Theresulting encrypted datais writtento encr ypt edDat a and
*encrypt edDat aLen is set to the number of encrypted bytes written. seed is

24

currently unused.

Datapassedto TSS_RSA Encrypt will be encrypted using PKCS#1 v1.5 padding and
apublic exponent of 3.

Return Values:
On success, *encr ypt edDat aLen is set to the number of encrypted bytes written to
encr ypt edDat a and TSS_SUCCESS is returned.

Synchronization:
None.

Errors:
If the RSA key object cannot be created dueto amal | oc failure,
TSS E _OUTOFMEMORY isreturned and none of the input parameters are touched. |If
callsto the the underlying crypto library fail, TSS_E_| NTERNAL _ERROCR isreturned.

2.4 Graphical User Interface

The sole GUI components to the LTC TSS will be the pop up windows used to input
authentication data for new and existing keys. Any number of different toolkits can be used to
implement the underlying functionality needed by the popup_Get Secret () functionin
section 2.4.0.

In the same way that the cryptographic implementations are pluggable, the GUI
components will be as well. Di spl ayNewPl NW ndowand Di spl ayPl NW ndowwill be the
abstraction point here (these are the two functions called by popup_Get Secr et). In order to
add a new type of GUI component to drive the popup messages, do the following:

1) Create a new directory, e.g. sr ¢/ t spi / gui / myQui .

2) Inside this directory, create the files 'mai n. ¢', 'support.c','i nterface. ¢c'and

'cal | backs. ¢' which implement Di spl ayNewPl NW ndow() and Di spl ayPl NW ndow() .

3) Add a check in configure.in for your GUI library and headers (see the GTK section of

confi gure. i n for an example). Make sure that the build system sets the variable “GUI_PATH”
to the name of the directory you created in step 1. At build time,

src/ tspi/gui/$CU _PATH *. ¢ will be built.

2.4.0 Graphical User Interface Functions

popup_Get Secr et - tspi/secrets.c
Synopsis:
TSS RESULT popup_GCet Secret (U NT32 new_pi n, BYTE *nessage,
voi d *aut h_hash)

Description:
popup_GCet Secr et invokes an underlying implementation to display a GUI window
for accepting authentication data. 1f new_pi n isnon-zero, Di spl ayNewPl NW ndow
will beinvoked, otherwise Di spl ayPl NW ndowwill beinvoked. Both
Di spl ayNewPl NW ndowand Di spl ayPl NW ndow are implented based on which
GUI toolkit is available at build time.

message will bedisplayed in the title bar of the window created. The SHA-1 hash of the
data collected by the PIN window will be writtento aut h_hash.

Di spl ayNewPl NW ndow isintended to have entry boxes for a password and confirm

25

password (to receive a password which has not previously been entered), whereas
Di spl ayPl NW ndowwill only have a box to enter one password, where that password
has previously been passed into the TSP and is only being verified.

Return Values:
On success, the SHA-1 hash of the data collected by the PIN window will be written to
aut h_hash and TSS_SUCCESS is returned.

Synchronization:
None.

Errors:
If message isnot set, or if the GUI pop up dialog is canceled by the user,
TSS _E | NTERNAL ERRORIsreturned.

2.5 Memory Management

The memory management functions in the TSP are used when data allocated by the TSS
must be returned to the application. At a later time this data will need to be f r ee'd due to a call
to Tspi _Cont ext _Cl oseQbj ect () or explicitly by a call to Tspi _Cont ext _FreeMenory().
Each mal | oc'd area of memory is associated with the TCS that the current TSP context is
associated with. This will enable easy cleanup of memory allocated by a TCS for one or more
TSP contexts which may close unexpected.

2.5.0 Data Structures

MenSl ot - include/memmgr.h
A Mentl ot holds areference to amemory area and pointer to the next Ments| ot .

Cont ext MenBl ot - include/memmgr.h
A Cont ext Ment| ot holdsaTCS_CONTEXT_HANDLE, apointer to aMentl ot and a pointer
to the next Cont ext Men| ot . For each TCS context handle the TSP gets, alinked list of memory

references will be maintained.
ContextMemSlot, ContextMemSlot,

Figure 2.0.5.0: Memory references maintained by the TSP

26

2.5.1 Functions

creat eMentl| ot - tspi/memmgr.c

Synopsis:
Mensl ot *creat eMenfl ot ()

Description:
creat eMentl ot cal | oc'sa MenfSl ot structure to be used by the memory
management subsystem. The mem slot is freed when either the application closesits TSP
context or explicityl calls Tspi _Cont ext _FreeMenory().

Return Vaues:

On success, areference to anew, zeroed-out MenS| ot structure is returned.
Synchronization:

None.

Errors:
If cal | oc fails, TSS_E OUTOFOVEMORY is returned.

concat MenSl ot - tspi/memmgr.c

Synopsis:
MenBl ot *concat MentS| ot (MentSl ot **first, MenSl ot *second)

Description:
concat Ment| ot appendsthe Ment| ot pointed to by second immediately after the
Menl ot pointedtobyfirst.

Return Vaues:
*first isawaysreturned.

Synchronization:
The TSP mem cache lock is held while manipulating the list.

Errors:
None.

r emoveMensl ot ByPoi nt er - tspi/memmgr.c

Synopsis:
TSS RESULT renoveMentl ot ByPoi nt er (Cont ext MenSl ot * cns, void
*poi nter)

Description:
r enmoveMens| ot ByPoi nt er searchesthrough the memory list inside cns for
poi nt er. If poi nt er isavalid memory pointer in cns, it isthen removed.

Return Vaues:
On success, TSS_SUCCESS is returned.

Synchronization:
The TSP mem cache lock is held while removing the item from the list.

Errors:

27

If poi nt er isnotfoundincns'smemory list, TSS_E | NTERNAL ERROR is

returned.
cal | oc_t spi - tspi/memmgr.c
Synopsis:
voi d *cal l oc_tspi (TCS_CONTEXT_ HANDLE t csCont ext, Ul NT32
howMuch)
Description:

cal | oc_t spi attemptsto alocatea Mentl ot of sizehowMuch inthe
Cont ext MenSl ot referenced by t csCont ext . If aCont ext Mentl ot does not
exist fort csCont ext , anew oneis created.

Return Vaues:
On success, TSS_SUCCESS is returned.

Synchronization:
Holds the mem cache lock while adding the MenfS| ot .

Errors:
If an error occurs, it is passed on to the caller.

free_tspi - tspilmemmgr.c
Synopsis:
TSS RESULT free_tspi (TCS_CONTEXT HANDLE tcsContext, void
*menPoi nt er)

Description:
free_t spi deallocatesthe memory located at menPoi nt er fromthe
Cont ext MenSl| ot structure associated witht csCont ext .

Return Values:
On success, TSS_SUCCESS is returned.

Synchronization;
Holds the mem cache lock while removing the Men| ot .

Errors:
If an error occurs, it is passed on through to the caller. If t csCont ext isnot avalid
TCScontext, TSS_E | NVALI D_HANDLE isreturned.

i sSThi sPoi nt er SPI - tspi/memmgr.c
Synopsis:
BOCOL i sThi sPoi nt er SPI (TCS_CONTEXT_HANDLE t csCont ext, void
*menPoi nt er)

Description:
i sThi sPoi nt er SPI searchesfor the Cont ext Mensl ot referenced by
t csCont ext for apointer that matches menPoi nt er . If itisfound, TRUE is
returned, else FALSE.

Return Vaues:

28

TRUE if menPoi nt er isan existing reference to memory inside the
Cont ext Mentl ot referenced by t csCont ext, FALSE otherwise.

Synchronization:
Holds the mem slot pointer while searching thelist.

Errors:
If t csCont ext isnot avalid TCS context, FALSE is returned.

2.6 Persistent Storage

User Persistent Storage (PS) is created to store keys on disk for loading at a later time.
Stored in user PS are a key's public and encrypted private areas, the key's properties and the
UUID of the key and its parent. The UUID's of keys kept in user PS can be the same as the
UUID's of keys in other processes' user PS, since no one entity knows about both keys. If one
process's TSP registers a key from its user PS into system PS and another process then tries to
register its key into system PS with a duplicate UUID, the TSS will return
TSS_E_KEY_ALREADY_ REG STERED.

The term 'persistent storage' can be confusing here, since the term persistent is usually
understood to mean “across multiple processes lifetimes.' Persistent storage is a more
applicable term to the TCS's storage, since it does exist across processes lifetimes, TCSD restarts
and platform restarts. However, the term 'persistent storage' is used here as well in order to
match the language in the TSS 1.1 specification.

The user persistent storage maintained by a TSP is a per-process data store. Its lifetime
is the same as that of the process that's using it. The user persistent storage will be created as /
var/t pnif user. { pi d}, where { pi d} is the process id of the TSP. On f or k() , the child
process will not retain any access to the parent's TSP key store.

The user and system PS files will be binary stores of the keys and key attributes listed
above. Keys will be stored in a way that makes key searches by UUID, public data and
TCPA_KEY structure optimal (these are the 3 search types possible in explicit calls to the TCS).
The format used is the following:

Ul NT32 num keys_on_di sk
TSS_UUI D UUI D_keyO

TSS UUI D parent _UUI D keyO
Ul NT16 public_key size0
Ul NT16 bl ob_si ze0

Ul NT16 cache_fl agsO
BYTEH[] publ i c_keyO
BYTE[] bl ob0

TSS_UU D UUI D _keyl
TSS_UUI D parent _UUI D keyl
U NT16 public_key_sizel
Ul NT16 bl ob_si zel

Ul NT16 cache_flagsl
BYTE[] public_keyl

BYTH[] bl obl

[0]
EOF

29

The cache_f | ags variable will record where the key's parent is stored (User or System
PS) and whether the key is valid or not. The valid flag is set when the key is written to disk and
unset by any operation that unregisters the key.

Performance tests will determine whether its necessary to break out the public data area
of each key. This should yield faster search times (since the entire key blob will not have to be
read from disk to perform some searches), but will require more disk space, since the public
data area is contained in the key's blob.

2.6.0 Persistent Storage Functions

ps_get _parent _uui d_by_uui d - tspi/ps/tspps.c
Synopsis:
TSS RESULT ps_get _parent _uuid_by uuid(int fd, TSS UU D
*uuid, TSS UUID *ret_uuid)

Description:
ps_get parent _uui d_by_uui d checksthe persistent data store kept in the file
with file descriptor f d for the UUID uui d and if found, copies the parent UUID of it into
the areapointed to by r et _uui d.

Return Vaues:
Onsuccess, *ret _uui d isfilled with the requested UUID and TSS_SUCCESS is
returned.

Synchronization:
Thefileitsalf islocked using f | ock() whilethefileis searched.

Errors:
If uui disnot found or its parent UUID isnot found, TSS E PS KEY_NOTFQUNDis
returned. If an error occurs while searching for uui d, TSS_E | NTERNAL_ERRORIs
returned.

ps_get _key_by_uui d - tspi/ps/tspps.c
Synopsis:
TSS RESULT ps_get _key by uuid(int fd, TSS UUl D uuid, BYTE*
ret_buffer, U NT16* ret_buffer_size)

Description:
ps_get key by uui d checksthe persistent data store kept in the file with descriptor
f d for the UUID uui d and if found, returns the key data associated with it in
ret _buffer andthesizeof thekeyin*ret buffer_size.

Return Vaues:
On success, r et _buf f er will contain the key data of key with UUID uui d and the
ret _buffer_sizeissettothesizeof thereturned key and TSS_SUCCESS is
returned.

Synchronization:
Thefileitself islocked using f | ock() whilethe key isbeing read.

Errors:

30

If uui disnotfound, TSS E PS KEY_NOTFOUNDIs returned. If the operation of key
extraction fails, TCS_E_| NTERNAL _ERRORIs returned.

ps_i s_pub_regi st ered - tspi/ps/tspps.c
Synopsis:
TSS RESULT ps_is_pub_registered(int fd, TCPA STORE PUBKEY
*pub, BOCOL *is reg)

Description:
ps_i s_pub_regi st er edd checksthe persistent data store kept in the file with
descriptor f d for the public key data* pub and if found, returns TRUE in the variable
i s_reg.

Return Vaues:
Onsuccess, *i s_regissetand TSS SUCCESS is returned.

Synchronization:
Thefileitself islocked using f | ock() whilethefileis searched.

Errors:
If an error occurs while searching for * pub, TSS_E_| NTERNAL_ERROR s returned.

ps_get _uui d_by_pub - tspi/ps/tspps.c
Synopsis.
TSS RESULT ps_get uuid by pub(int fd, TCPA STORE PUBKEY
*pub, TSS UUID **ret_uuid)

Description:
ps_get uui d_by pub checksthe persistent data store kept in the file with descriptor
f d for the public key datapub and if found, mallocs new space and copiesits UUID into
abuffer pointedto by **r et _uui d.

Return Values:
On success, **r et _uui d isset to the requested UUID and TSS_SUCCESS is returned.

Synchronization:
Thefileitsdlf islocked using f | ock() whilethefileis searched.

Errors:
If the public key data does not match any keysin the requested persistent store
TSS E PS KEY_NOTFOUNDisreturned. If the operation of extracting the UUID fails,
TCS_E | NTERNAL_ERRORisreturned. If memory cannot be malloc'd to return the
uuid, TSS_E_OUTCOFMEMORY.

ps_wite_key - tspi/ps/tspps.c
Synopsis:
TSS_RESULT ps_wite_key(int fd, TSS_UU D *uuid, TSS UU D
parent _uuid, U NT32* parent_ps, BYTE* key_ bl ob, Ul NT32
key bl ob_size)

Description:

ps_write_key writesthekey pointedto by key bl ob to the persistent store in the
filewith descriptor f d. uui d isset asthe UUID and par ent _uui d isset asthe key's

31

get _fi

put fi

wite

parent's UUID. If parent _ps isTSS PS TYPE SYSTEM the parent's persistent
storage typeis recorded as system storage, else user storage.

Return Values:
On success, the key iswritten to persistent storage and TSS_SUCCESS is returned.

Synchronization:
Thefileitself islocked using f | ock() whilethe key is being written.

Errors:
If any operation fails, TCS_E | NTERNAL ERRORIsreturned.

| e - tspi/ps/tspps.c

Synopsis:
int get_file()

Description:
get fil e isafunction used by other functionsto obtain a handle to a persistent
storage file. On thefirst call of get file, the persistent storage file will be created, opened
and locked. On subsequent calls, the file lock will be taken and the handle will be
returned.

Return Values:
On success, the integer handle to persistent storage is returned.

Synchronization;
Thefileislocked using f | ock() whilethekey isbeing written.

Errors:
If any operation fails, TCS_E | NTERNAL ERRORIs returned.

| e - tspilps/tspps.c

Synopsis.
int put file(int fd)

Description:
put fil e isafunction used by other functionsto release a handle to a persistent
storagefile. put _fil e isbasically just awrapper to f I ock(), with the filelock being
released.

Return Vaues:
On success, the integer handle to persistent storage is returned.

Synchronization:
Thefile'slock isreleased using f | ock() .

Errors:
If any operation fails, - 1 isreturned.

key_i ni t - tspi/ps/tspps.c

Synopsis:
int wite_key init (int fd, U NT32 pub_data_size, U NT32
bl ob_si ze)

32

Description:
wite_key_init isusedtomovethefilepointer of the file with descriptor f d to the
point where the next key can be written.

Return Vaues:
On success, the value of the offset into the persistent storage file (in bytes) where the new
key should be written isreturned. It callsfind write offset to check if there are any
"holes" inthefile and if so, returns the offset of the hole. If not, the file pointer is seeked
to the end of thefile and that offset is returned.

Synchronization:
None.

Errors:.
If an error occursin seeking, - 1 isreturned.

find_wite_of fset -tspi/ps/tspps.c
Synopsis:
int find wite_offset(U NT32 pub_data_size, U NT32
bl ob_si ze)

Description:
find wite_ offset isusedbywite key init() tofindany "holes'inthe
persistent storage file to write anew key to. Based on the size of the public key data and
blob, fi nd_write_of f set movesthrough the key disk cache and triesto find an
invalid cache entry (an entry that has been flagged asinvalid in the PS) that matches these
two fields. If found, the offset into the file of this "hole" is returned.

Return Values:
On success, the value of the offset into the persistent storage file (in bytes) where the new
key should be written is returned.

Synchronization:
Thekey disk cache lock is held while searching for the invalid key.

Errors:
If no"empty" spaceinthe PSfileisfound, - 1 isreturned.

2.6.1 Key Registration Functions

The following key registration functions sit on top of the persistent storage functions in
section 2.6.0. They act as wrappers, first creating the persistent store file name based on their
process ID and then returning a TSS_RESULT based on whether the underlying persistent store
function succeeds or fails.

keyr eg_I| sKeyAl r eadyRegi st er ed - tspi/keyreg.c

Synopsis:
BOOL keyreg_| sKeyAl readyRegi st ered(U NT32 keyBl obSi ze, BYTE
*keyBl ob)

Description:

33

keyreg | sKeyAl r eadyRegi st er ed checksthe persistent store for the public key
data contained in keyBl ob. keyBl obSi ze is currently unused.

Return Vaues:
If the key exists, TRUE is returned, else FALSE.

Synchronization:
Thefilelock isheld by the layer below (see functionsin section 2.6.0).

Errors:
If an error occurs, FALSE is returned and the error is logged.

keyreg_Wit eKeyToFi | e - tspi/keyreg.c
Synopsis:
TSS RESULT keyreg WiteKeyToFil e(TSS UU D myUUI D, TSS UU D
parent UUI D, Ul NT32 parent PSType, U NT32 bl obSi ze, BYTE
*bl ob)

Description:
keyreg Wit eKeyToFi | e generatesthe persistent storage file based on the current
process ID and calls the underlying persistent storage function to write the key blob into
it.

Return Vaues:
On success TSS_SUCCESS s returned.

Synchronization:
Thefilelock isheld by the layer below (see functionsin section 2.6.0).

Errors:
If an error occurs while generating the persistent storage filename,
TSS E | NTERNAL_ERROR isreturned.

keyr eg_RenoveKey - tspi/keyreg.c
Synopsis:
TSS RESULT keyreg_ RenoveKey(TCS _CONTEXT _HANDLE t csCont ext,
TSS _UUI D *uui d)

Description:
keyr eg RenoveKey searchesthe key disk cache for an entry with UUID equal to
uui d. If itsfound, the cache entry is marked invalid. Inthefuture, if anew key needs
to be written to disk, the invalidated entry will be overwritten.

Return Values:
If adisk cache entry isfound with a UUID matching uui d, the entry is marked invalid
and TSS_SUCCESSisreturned.

Synchronization:
The key disk cache lock is held while searching through the cache. The filelock is never
taken, since no changes to the file are made.

Errors:
If akey with UUID uui d isnot found in thedisk cache, TSS_E PS KEY_NOTFOUND

34

is returned.

keyr eg_Cet KeyByUUIl D - tspi/keyreg.c
Synopsis:
TSS _RESULT keyreg Get KeyByUUl D(TCS_CONTEXT_HANDLE
tcsContext, TSS UUI D *uuid, U NT32 *bl obSi zeQut, BYTE
** bl ob)

Description:
keyr eg Get KeyByUUl Dtakesthefilelock for the persistent storage file and calls the
underlying persistent storage function (ps_get _key_by_uui d) to retreive the key
*bl ob fromit. *bl obSi zeQut isalso set to the size of the retreived key blab.
mal | oc iscalled to create space for the returned blob.

Return Values:
On success TSS _SUCCESS s returned.

Synchronization;
Thefilelock is held by the layer below (see functionsin section 2.6.0).

Errors:
If an error occurs while getting the persistent storage file's lock,
TSS_E_| NTERNAL_ERRCR isreturned. If the underlying persistent storage function
fails, itsreturn code is passed through to the caler.

keyr eg_Get Par ent UUI DByUUI D - tspi/keyreg.c
Synopsis:
TSS RESULT keyreg_ Get Par ent UUI DByUUl D(TSS_UUI D *uui d,
TSS UUI D * parent _uuid)

Description:
keyr eg_GCet Par ent UUl DByUUI D generates the persistent storage file based on the
current process |D and calls the underlying persistent storage function to retreive the
parent's UUID of the key with UUID uui d.

Return Values:
On success TSS_SUCCESS isreturned and * par ent _uui d isset.

Synchronization:
Thefilelock isheld by the layer below (see functionsin section 2.6.0).

Errors:
If an error occurs while generating the persistent storage filename,
TSS_E_| NTERNAL_ERROCR isreturned. If the underlying persistent storage function
fails, TSS_ E PS KEY_ NOTFOUNDisreturned.

keyr eg_Cet Par ent PSTypeByUUl D - tspi/keyreg.c

Synopsis:
TSS RESULT keyreg_Get Par ent PSTypeByUUI D(TSS_UUI D *uui d,
U NT32 * psTypeQut)

Description:
keyr eg_GCet Par ent PSTypeByUUl D checks the key disk cache for akey with UUID

35

uui d and returnsits PStypein* psTypeCQut .

Return Values:
On success, * psTypeCQut is set to the persistent storage type of the parent UUID of the
key matching uui d and TSS_SUCCESS is returned.

Synchronization:
Thekey disk cache lock isheld while searching the list.

Errors:
If the UUID uui d isnot found, TSS E PS KEY_ NOTFOUND is returned.

keyreg_repl aceEncDat a_PS - tspi/keyreg.c

Synopsis:
TSS_RESULT keyreg_repl aceEncDat a_PS(BYTE * encData, BYTE
*newEncDat a)

Description:
keyreg repl aceEncDat a_PS generatesthe persistent storage file based on the
current process |D and calls the underlying persistent storage function to replace
encDat a with newEncDat a.

Return Vaues:
On success TSS SUCCESS is returned.

Synchronization:
Thefilelock is held by the layer below (see functionsin section 2.6.0).

Errors:
If an error occurs while generating the persistent storage filename,
TSS E | NTERNAL ERROR isreturned.

2.7 TCS Calling Interface

The format of the packets transferred between the TSP and the TCS layers are set to be
defined by a proposal to the TSS Working Group (TSSWG) as of the writing of this document.
The LTC-TSS will conform to this packet format once it is approved by the TSSWG. The format
is expected to be SOAP based.

From the TSP's view, a transaction between the TCS and TSP would look like a standard
client-server interaction:

time
TSP TCS
sock = accept ()
sock = connect ()
send(sock, packet)
packet = recv(sock)

[process packet]

36

TSP TCS
send(sock, result)
result = recv(sock)
cl ose(sock) cl ose(sock)

[process result]

Figure 2.7: The interaction between a TSP thread and the TCS, from the TSP's perspective

The above table illustrates the program flow of a simple thread of the TSP only. The
thread is blocked while waiting on r ecv() and continues once it returns. An advanced multi-
thr¥ded app may have several threads simultaneously blocked waiting for data from one or
more TCS's.

Please refer to section 3.1 for information on the TCS's processing of packets.

2.8 Utilities

Some functions included in the LTC-TSS are not enumerated in this low level design .
The use and purpose of these functions should be obvious to anyone reading the code and so
are not included here. These are functions for things such as sanity checking whether a context
exists or is the right type, utilities to manipulate blobs of data, routines to convert from one data
type to another and so on. All functions not enumerated here are internal to the TSS only.

3.0 TCG Core Service
3.1 TCS Calling Interface

The TCG Core Services daemon is required to be implemented as a system service,
being the sole access to the TPM hardware (through the TCG device driver layer). The TCS
provides serialized TPM access to multiple TSP's, manages the system persistent key storage,
manages requests made to the TPM as well as providing the API services specified in the TSS 1.1
specification. The TCS also manages the log of PCR events.

The TCS is multi-threaded, but the view of a transaction from the TCS side is slightly
less complex:

time
TSP TCS
sock = accept ()
sock = connect ()
send(sock, packet)
v

37

TSP TCS
packet = recv(sock)
spawn_t hr ead(sock, packet)
result = recv(sock)

[block waiting for TCS thread]

Figure 3.1: A transaction between the TCS and TSP from the TCS's perspective

v In figure 3.1, the spawn_t hr ead() function will be responsible for taking the received
packet, decoding it, calling the correct function based on the TCS ordinal and calling send() to
return the result of the operation to the TSP. This operation may block if the thread requires
access to the TPM. Since a TPM request can take on the order of seconds to complete, a TPM
Request Manager (TRM), residing inside the TCS, will block more than one thread from
accessing the TPM at a time. The TRM will be responsible for maintaining the queue of current
TPM requests, while the TCSKCM will dispatch threads to the TRM based on which key and
auth contexts each request requires and which contexts are cached in the TPM. A simple
scheduler algorithm such as round-robin would not be appropriate for the, since the TPM's
resources are limited and swapping out contexts for requests from multiple threads has high
overhead. Performance data from test cases will be used to identify an optimal algorithm.

Platform A Platform B
TSP TSP TSP TSP
-
TCS
TRM -
v
TDDL ——p TPM

Figure 3.2: Multi-threaded access to a TPM. Each arrow represents a thread of execution.

3.1.0 Data Structures

TCSRequest

The TCSRequest structure will hold a decoded request from the TSP. After receiving the
encoded data from the TSP, packet Decode will be called to convert it into a TCSRequest
structure. The TCSRequest will then be handled by the TCS.

3.1.1 Functions [FIXME]

packet Decode — tcs/main.c

38

Synopsis:
struct TCSRequest *packet Decode(void *dat a)

Description:
packet Decode takesdatareceived from a TSP and decodesit into avalid TCS
request. The structure of TCSRequest will be described in an upcoming TSSWG
proposal.

Return Vaues:
On success, packet Decode returnsanewly allocated TCSRequest structure, filled
out with datafrom * dat a.

Synchronization:;
None.

Errors:
If avalid TCS request cannot be created from dat a, NULL is returned.

packet Encode - tcs/main.c

Synopsis.
i nt packet Encode(struct TCSRequest *req, char *dest)

Description:
packet Encode takesaTCSRequest tobereturnedtoa TSP and encodesit into a
format that the TSP will understand. The structure of TCSRequest will be described in
an upcoming TSSWG proposal. r eq isencoded into the correct format and written to
dest . The number of byteswritten to dest isthen returned.

Return Values:
On success, packet Encode returnsthe number of byteswritten to dest .

Synchronization:
None.

Errors:
If avalid encoded packet cannot be created fromreq, - TSS_E | NTERNAL _ERRORis
returned.

3.2 System Persistent Storage

Once a TCS daemon is started and it begins the task of managing a platform's TPM, the
system PS begins to be populated with keys. Initially, only the TPM's Storage Root Key (SRK) is
read from the chip and written to system persistent storage, but eventually TSP's will begin
requesting that their keys be registered in system PS. Keys registered in system PS will be
available until the application calls Tspi _Cont ext _Unr egi st er Key() . The keys registered in
system PS will remain on disk after the application exits and will survive system reboots/halts
and TCS restarts. The amount of system PS is limited only by available disk space.

System persistent storage is kept in the file / var/ t pmf syst em dat a. The system
persistent storage file will have the same format as the user persistent storage files. The TCS
daemon will create/ var/ t pmf syst em dat a (including the directory) if it does not exist. The
/ var / t pmdirectory will be set with its sticky bit on, so that applications cannot modify or

39

delete the system persistent storage file.
The system persistent storage file format will be the following:

Ul NT32 num keys_on_di sk
TSS_UU D UUI D_keyO

TSS UUI D parent _UUI D keyO
Ul NT16 public_key_size0
U NT16 bl ob_si ze0

Ul NT16 cache_fl agsO
BYTE[] publ i c_keyO

BYTE[] bl ob0

TSS_UUI D UUI D key1l
TSS_UUI D parent _UUI D keyl
Ul NT16 public_key_sizel
Ul NT16 bl ob_si zel

Ul NT16 cache_flagsil
BYTE[] public_keyl

BYTE[] bl ob1

[...]
ECF

The cache_f | ags variable will record where the key's parent is stored (User or System
PS) and whether the key is valid or not. The valid flag is set when the key is written to disk and
unset by any operation that unregisters the key. At TCSd shutdown time, the di sk_cache array
in memory is scanned and any invalid keys are zeroized on disk. num keys_on_di sk keeps
count of the total number of spaces on disk that keys occupy. The num keys_on_di sk variable
is not affected by whether a key is valid or not.

3.2.0Functions

get Next TcsKeyHandl e - tcs/cache.c

Synopsis:
TCS_KEY_HANDLE get Next TcsKeyHandl e()

Description:
get Next TcsKeyHandl e generates the next unique TCS key handle and returns it.

Return Vaues:
On success, the next available TCS key handle is returned.

Synchronization:;
The TCS key handle lock is held while generating the next handle. Thisisthe only
function where thislock is held. Its used only to ensure key handles are unique.

Errors:
None.

get Next Ti meSt anp - tcs/cache.c
Synopsis:

40

U NT32 get Next Ti meSt anp()

Description:
get Next Ti meSt anp generates the next time stamp and returnsiit.

Return Values:
On success, the next avail able time stamp is returned.

Synchronization;
The time stamp lock is held while generating the next handle. Thisisthe only
function where thislock isheld. Its used only to ensure time stamps are unique.

Errors:
None.

i ni t Di skCache - tcs/cache.c

Synopsis:
TSS RESULT initDi skCache()

Description:
i ni t Di skCache initializes the disk cache lock, takes the persistent storage file'slock
and calls the underlying function (i ni t _di sk_cache) toinitialize the disk cache.

Return Values:
On success, TSS_SUCCESS isreturned.

Synchronization;
The filelock on the persistent storage fileis held whilecallingi ni t _di sk_cache.

Errors:
If wefail to get thefilelock, TSS_E | NTERNAL_ERROR s returned. If
i nit_di sk_cache fails, itserror is passed through to the caller.

cl oseDi skCache - tcs/cache.c

Synopsis:
TSS RESULT cl oseDi skCache()

Description:
cl oseDi skCache takesthe persistent storage file's lock and calls the underlying
function (cl ose_di sk_cache) to close the disk cache.

Return Vaues:
On success, TSS_SUCCESS isreturned.

Synchronization:

The filelock on the persistent storage fileis held while calling cl ose_di sk_cache.
Errors:

If wefail to get thefilelock, TSS_E | NTERNAL ERRORIisreturned. If

cl ose_di sk_cache fals, itserror is passed through to the caller.

get Par ent UUI DBy UUI D - tcs/cache.c

Synopsis:
TSS_RESULT get Parent UUI DByUUl D(TSS_UUI D *uuid, TSS UUI D

41

**ret _uuid)

Description:
get Par ent UUI DBy UUI D checks the key disk cache for the UUID uui d and if found,
returns the parent UUID of itin*r et _uui d.

Return Vaues:
On success, *r et _uui d is set to the requested UUID and TSS_SUCCESS is returned.

Synchronization:
The key disk cachelock is held while the cache is searched.

Errors:
If uui d isnot found, TCS_E_FAI L isreturned.

renobveRegi st er edKey - tcs/cache.c

Synopsis:
TSS RESULT renoveRegi st eredKey(TSS_UUI D *uui d)

Description:
r enoveRegi st er edKey searchesthe key disk cache for the UUID uui d and if
found, marks the key associated with it as being invalid in the cache.

Return Values:
On success, the requested key is marked invaid in the cache and TSS_SUCCESS is
returned.

Synchronization:
Thekey disk cache is held while the cache is searched.

Errors:
If uui disnotfound, TCS_E KEY_NOT_REG STEREDisreturned.

get Regi st er edKeyByUUI D - tcs/ps/tcsps.c
Synopsis:
TSS RESULT get Regi st er edkeyByUUI D{ TSS _UUI D *uui d, BYTE*
bl ob, UI NT16* bl ob_si ze)

Description:
get Regi st er edkKeyByUUl D getsthe file handle for the current persistent storage file
andcals ps_get key_ by uui d toretrievethe key'sblob. The persistent storeis
searched for the UUID uui d and if found, returns the key data associated with it in bl ob
and the size of thekey in* bl ob_si ze.

Return Vaues:
On success, bl ob will contain the key data of key with UUID uui d and the
bl ob_si ze isset to the size of the returned key and TSS_SUCCESS is returned.

Synchronization:;
None.

Errors:
If ps_get _key_by_uui d fails, itserror isreturned to the cdler. If the PSfile handle

42

cannot be obtained, TSS_E | NTERNAL _ERROR s returned.

get _parent _ps_type_by_uui d - tcs/ps/tcsps.c
Synopsis:
TSS RESULT get parent _ps _type_ by uuid(int fd, TSS UU D
uuid, U NT32 ret_ps_type)

Description:
get _parent _ps_type_by uui d checksthe persistent data store kept in the file
with handle f d for the UUID uui d and if found, returns the parent's persistent storage
typein*ret _ps_type.

Return Values:
On success, *r et _ps_t ype is set to the requested persistent storage type and
TSS SUCCESS isreturned.

Synchronization:
Thekey disk cache lock is held while the cache is searched.

Errors:
If uui d isnotfound, TSS E PS KEY NOTFOUND isreturned.

ps_i s_pub_regi st ered - tcs/ps/tcsps.c
Synopsis:
TSS RESULT ps_is_pub_registered(int fd, TCPA STORE PUBKEY
pub, BOOL is_reg)

Description:
ps_i s_pub_regi st er ed checksthe persistent data store kept in the file with handle
f d for the public key datapub and if found, returns TRUE in the variablei s_r eg.

Return Values:
Onsuccess, *i s_reg issetand TSS SUCCESS isreturned.

Synchronization:
The key disk cache lock is held while the cache is searched. Thefilelock isheld by the
caler.

Errors:
If no key matchespub, TSS SUCCESS isreturnedand *i s_r eg issetto FALSE. If an
error occurs while searching for thekey, TSS_E | NTERNAL _ERROR isreturned.

ps_get _uui d_by_pub - tcs/ps/tcsps.c
Synopsis:
TSS RESULT ps_get _uuid_by_pub(int fd, TCPA STORE_PUBKEY
*pub, TSS UUID **ret_uuid)

Description:
ps_get uui d_by pub checksthe persistent data store kept in the file with handlef d
for the public key data pub and if found, returns the UUID of itin*r et _uui d.

Return Vaues:

On successmal | oc iscalled to allocate space for *r et _uui d, which issettothe
requested UUID and TSS_SUCCESS is returned.

43

Synchronization:
Thefileitself islocked using f | ock() by thecaller. The key disk cachelock isheld
while the cache is searched.

Errors:
If the public key data does not match any keys in the requested persistent store,
TSS _E PS _KEY_NOTFOUND s returned. If the operation of extracting the UUID fails,
TSS _E | NTERNAL ERRORisreturned. If the call to malloc fails,
TSS E OQUTOFMEMORY isreturned.

ps_write_key - tcs/ps/tcsps.c
Synopsis:
TSS_RESULT ps_wite_key(int fd, TSS_UU D *uuid, TSS UU D
parent _uui d, U NT32 parent_ps, BYTE* key_ bl ob, U NT32
key bl ob_size)

Description:
ps_wite_key writesthekey pointedto by key bl ob to the persistent store in the
filewith descriptor f d. uui d isset asthe UUID and par ent _uui d isset asthe key's
parent's UUID. If parent _ps isTSS_PS _TYPE_SYSTEM the parent's persistent
storage typeis recorded as system storage, else user storage.

Return Values:
On success, the key iswritten to persistent storage and TSS_SUCCESS is returned.

Synchronization:
Thefileitself islocked using f | ock() whilethe key isbeing written.

Errors:
If any operation fails, TCS_E | NTERNAL ERRORIsreturned.

3.3 TCS Context Handling

TCS contexts are generated by the TCS daemon (not the TPM!) and are used by a TSP to
tie objects and data that it creates to a specific TCS. The list of TCS contexts which have been
created by the TCS and returned to some TSP is maintained internally to the TCS. When a TSP
terminates its connection to the TCS, the TCS handle is destroyed.

3.3.0 Data Structures
t csCont ext - include/tcs_internal_types.h

Thet csCont ext structure containsa TCS_CONTEXT _HANDLE and a pointer to the next
t csCont ext. t csCont ext structures are used to maintain alinked list of al existing
TCS_CONTEXT_HANDLE'.

3.3.1 Functions
create_tcs_context - fes/cxt.c

Synopsis:
struct tcs_context *create_tcs_context ()

44

Description:
create _tcs_context calscall octocreatea struct tcs_context and
returnsit. The TCS context is freed when the application closes its connection with the
TCS.

Return Values:
On success, areference to the newly created st ruct tcs_cont ext isreturned.

Synchronization:
None.

Errors:
If cal | oc fails, NULL isreturned.

get _cont ext - fcs/ext.c

Synopsis:
struct tcs_context *get_context (TCS_CONTEXT_HANDLE handl e)

Description:
get _cont ext searchesthe TCSsinternal list of TCS_CONTEXT_HANDLE' sfor one
that matches handl e and returns areference to it.

Return Values:
On success, thest ruct tcs_cont ext structure that holds
TCS_CONTEXT_HANDLE t csCont ext isreturned.

Synchronization:
The TCS context lock must be held by the caller while thelist is being searched.

Errors:
If handl e isnot found, NULL isreturned.

destroy_context - tcs/cxt.c

Synopsis.
voi d destroy_cont ext (TCS_CONTEXT _HANDLE handl e)

Description:
destroy_cont ext removestheinternal data structures used to maintain areference
tohandl e.

Return Vaues:
None.

Synchronization:
The TCS context lock is held while the list is being searched.

Errors:
None.

make_cont ext - fcs/cxt.c
Synopsis:

45

TCS_CONTEXT_HANDLE makeTcsCont ext ()

Description:
make cont ext createsa struct tcs_cont ext and addsitstothe TCSsinternal
list. In the process, anew TCS_CONTEXT_HANDLE is created and returned.

Return Vaues:
On success, the newly created TCS_CONTEXT_HANDLE is returned.

Synchronization:
The TCS context lock is held while the list is being manipul ated.

Errors:
If mal | oc fails, an error islogged and NULL_TCS_HANDLE is returned.

3.4 Event Handling

A PCR event is recorded when the TSPi passes in a TSS_PCR_EVENT structure to
Tspi _TPM Pcr Ext end() . The event type and internals of the TSS_PCR_EVENT structure are
all application defined, the TSS only has to append the event to the event log for the PCR being
manipulated. The event log is maintained by the TCS in order to return to the application on a
call to Tspi _TPM Get Event (), Tspi _TPM Get Event s() or Tspi _TPM Get Event Log() .

PCR Events are logged using a linked list of TSS_PCR_EVENT structures per PCR. Each
time an event occurs on a PCR, a new event structure is added to the linked list that corresponds
to that PCR.

Due to the fact that some PCR events are logged for PCR extends in kernel space, the
TCSD can be configured to read those kernel maintained event logs from the /proc (or in
upcoming Linux kernel versions, /sysfs). In order to allow TCSD implementors to write an
interface for any external event source, an abstraction has been added. Please see tcs/imaem.c
and include/imaem.h for an example of an external log source implementation. An overview is
provided in the Portability section (4.0) of this document.

3.4.0 Data Structures

event _| og —include/tcsem.h
event _| og structures are used to keep pointersto the arrays of event _wr apper structures
that are maintained per PCR.

event _wr apper —include/tcsem.h

event _wrapper structureseach hold one TSS_PCR_EVENT and a pointer to the next
event _wr apper.
ext _| og_sour ce -- include/tcsem.h

ext | og_source structures hold pointers to functionsthat will open, close, and retrieve log
entries from an externally defined source.

event _| og

46

PCR, B> event_wrapper ML
0

PCR, — P NULL

1

Figure 3.5.0: A PCR Event Log structure. At this point, 2 events have occurred on PCRy, no
events have occurred on PCR; and PCR's 2+ are not shown.

3.4.1 Functions

event _| og_i nit - tes/tcsem.c

Synopsis:
TSS RESULT event log_init()

Description:
event | og_init cal | oc'sanew event_log struct, initializes its mutexes and sets up
its kernel and firmware log sources based on the TCSD's compile time flags.

Return Values:
On success, the TCS event log is created and TSS _ SUCCESS iis returned.

Synchronization;
None.

Errors:
If cal | oc fails, TSS_E_OUTOFNMEMORY is returned.

event | og_final - tcs/tcsem.c

Synopsis:
TSS RESULT event | og_final ()

Description:
event | og final free'sal eventlog structures and returns TSS_SUCCESS.

Return Values:
On success, TSS SUCCESS isreturned.

Synchronization:
The event log lock is held while the event log structures are being deall ocated.

Errors:
None.

event | og_add- tcs/tcsem.c

Synopsis:
TSS RESULT event | og_add(TSS_PCR EVENT *event, Ul NT32
*pNunber)

Description:
event _| og_add addsanew PCR event to the TCSsinternal PCR event log. event -

47

>ul Pcr | ndex should contain the PCR number that the even occurred on. PCR events
are not deallocated until a TCS shutdown. The number of the event isreturned in
*pNunber .

Return Values:
On success, the event isadded and TSS_ SUCCESS is returned.

Synchronization:
The TCS event log lock is held while the event is being added.

Errors:
If mal | oc failsin creating the new PCREvent structure, TSS_E_OUTOFMEMORY is
returned.

get _pcr _event - tcs/tcsem.c

Synopsis:
TSS PCR EVENT *get pcr_event (U NT32 pcrlndex, U NT32
event Nunber)

Description:
get PCREvent ByNunber retreivesthe TSS_PCR_EVENT structure with event
number event Nunber from the event log of the PCR with index pcr | ndex.

Return Values:
On success, areference to the requested TSS_PCR_EVENT structure is returned.

Synchronization;
The TCSevent log lock isheld while the event list is being searched.

Errors:

If pcr | ndex isout of range or the event number DNE, NULL is returned.

get _num event s - fcs/tcsem.c
Synopsis:
U NT32 get _num events(U NT32 pcrl ndex)
Description:
get PCREvent ByNunber retrurns the number of events that have occurred on PCR
number pcr | ndex.

Return Vaues:
On success, the number of events that have occurred on PCR pcr | ndex isreturned.

Synchronization:
The TCS event log lock is held while the event list is being searched.

Errors:
None.

3.5 Key Cache Management

48

TCS key cache operations are initiated by a TSP. Itis the TCS's job to juggle the requests
of multiple TSP's at once, making the necessary TPM calls to swap key contexts. In order to
facilitate access by multiple TSP's, a v1.1 TPM optionally provides the ability to swap out key
and auth session contexts. This frees up the TPM's limited internal resources and allows the
TCS to more easily context switch between the resources needed by multiple TSP processes.
The following example has been simplified from an implementation perspective to illustrate key
caching. Please see section 3.1 for information on how the TCSKCM and TRM work together.

In the figure at left, each numbered box represents a
pending TPM request that requires the key represented by its
number. This example assumes that the TPM in use has the

4 | key, ability to load up to 2 keys at a time and that keys #2 and #3 are
% already loaded. Since request 1 needs to be submitted to the
3 TPM which requires key #1, the TCS Key and Credential
key, Manager (TCSKCM) will make a TPM_SaveKeyContext request
v to the TPM. This will export key #3 from the TPM and free its
2 [key internal TPM resources. The TCSKCM will then call
2 TPM_LoadKey for key #1 and submit request number 1 to the

* TPM. Once request 1 has finished, the TCSKCM will see that
key #2 is already present in the TPM and request 2 can be

1 key, issued. Likewise, request 3 can be issued because key #1 is still
resident in the TPM. Once request 3 has completed, the
* TCSKCM must either issue a TPM_SaveKeyContext command
to the TPM for key #1 or #2, or issue a TPM_EvictKey command
TPM to evict key #1 or #2. Then, the TCSKCM issues a
TPM_LoadKeyContext command to have the TPM load key #3

back into the TPM before request 4 can be submitted.

Figure 3.6: Key contention within the TCS

If the TPM does not support the TPM_SaveKeyContext / TPM_LoadKeyContext
interface (optional for a v1.1 TPM), TPM_LoadKey and TPM_EvictKey will be used. The
TCSKCM will attempt to be optimal in its calls to the TPM, ordering them as appropriate to
minimize the total number of TPM requests .

3.5.0 Data Structures

key_nem cache- include/tcs_utils.h

Thekey_mem cache structure contains information about the key being kept in the TCS's
cache. key_nmem cache entries contain info such asthe key's UUID, its parent's UUID, its public data,
the key blob itself, whether the key is actualy resident in the TPM and so on.

3.5.1 Functions

get Par ent PubBy S| ot - tcs/cache.c

Synopsis:
TCPA_STORE_PUBKEY *get Par ent PubBySI ot (TCPA KEY_HANDLE
t pm_handl e)

Description:
get Par ent PubBy S| ot searchesthrough the TCS key cache for an entry matching

49

t pm_handl e. When itsfound, areference to that key's parent's public key is returned.

Return Values:
On success, areference to the requested key's parent's public key is returned.

Synchronization:
The TCSkey cachelock is held while the list is being searched.

Errors:
If thesl ot isnot found, NULL isreturned.

get PubBy Sl ot - tcs/cache.c

Synopsis:
TCPA _STORE_PUBKEY *get PubBySl ot (TCPA_KEY_HANDLE t pm handl e)

Description:
get PubBy Sl ot searches through the TCS key cache for an entry matching
t pm_handl e. When itsfound, areference to that key's public key is returned.

Return Vaues:
On success, areference to the requested key's public key is returned.

Synchronization:
The TCS key cache lock is held while the list is being searched.

Errors:
If the dlot isnot found, NULL is returned.

get PubByHandl e - tcs/cache.c

Synopsis:
TCPA_STORE_PUBKEY *get PubByHandl e(TCS_KEY_HANDLE t cs_handl e)

Description:
get PubByHandl| e searches through the TCS key cache for an entry matching
TCS_KEY_HANDLE t cs_handl e. Whenitsfound, areference to that key's public
key isreturned.

Return Values:
On success, a reference to the requested key's public key is returned.

Synchronization;
The TCSkey cachelock is held while the list is being searched.

Errors:
If the TCS context is not found, NULL isreturned.

set Par ent ByHandl e - tcs/cache.c

Synopsis:
TSS RESULT set Par ent ByHandl e(TCS_KEY_HANDLE tcs_handl e,
TCS_KEY_HANDLE p_t cs_handl e)

Description:
set Par ent ByHandl e searches through the TCS key cache for an entry matching

50

TCS_KEY_HANDLE t cs_handl e. If itsfound, akey with a handle matching
p_t cs_handl e issearched for. If they're both found, a pointer from child to parent is
set internally inthe TCSkey _di sk_cache structure of the child.

Return Values:
On success, TSS_SUCCESS isreturned.

Synchronization:;
The TCSkey cachelock is held while the list is being searched.

Errors:
If the TCS context isnot found, TCS_E_FAI L isreturned.

get Uui dByPub - tcs/cache.c

Synopsis:
TSS_UUI D *get Uui dByPub(TCPA_STORE_PUBKEY *pub)

Description:
get Uui dByPub searches through the TCS key cache for an entry who's public key
matches pub. When itsfound, areference to that key's UUID isreturned.

Return Values:
On success, areference to the requested key's UUID is returned.

Synchronization:
The TCS key cache lock is held while the list is being searched.

Errors:
If the cache cannot be initialized, or no cached key matches pub, NULL isreturned.

get UUI DByEncDat a - tcs/cache.c

Synopsis.
TSS UUI D *get UUI DByEncDat a(BYTE * encDat a)

Description:
get UUI DBy EncDat a searches through the TCS key cache for an entry who's encrypted
data area matches encDat a. When itsfound, areference to that key's UUID isreturned.

Return Vaues:
On success, areference to the requested key's UUID is returned.

Synchronization:
The TCS key cache lock is held while the list is being searched.

Errors:
If the cache cannot be initialized, or no cached key matchesencDat a, NULL is returned.

get TCSKeyHandl eByEncDat a - fcs/cache.c

Synopsis:
TCS_KEY_HANDLE get TCSKeyHandl eByEncDat a(BYTE * encDat a)

51

Description:
get TCSKeyHand| eByEncDat a searches through the TCS key cache for an entry
whao's encrypted data area matchesencDat a. When its found, that key's
TCS_KEY_HANDLE isreturned.

Return Vaues:
On success, the requested key's TCS_KEY _HANDLE is returned.

Synchronization:
The TCSkey cache lock is held while the list is being searched.

Errors:
If the cache cannot be initialized, or no cached key matchesencDat a,
NULL_TCS_HANDLE isreturned.

r epl aceEncDat a_know edge - tcs/cache.c
Synopsis:
voi d repl aceEncDat a_know edge(BYTE * encData, BYTE
*newEncDat a)

Description:
r epl aceEncDat a_know edge searches through the TCS key cache for an entry with
encrypted data matching encDat a and replaces that encrypted data with newEncDat a.

Return Values:
On success, the requested encDat a is replaced.

Synchronization:
The TCS key cache lock is held while the list is being manipulated.

Errors:
If the cache cannot be initialized, or if akey matching encDat a cannot be found, no
action is taken.

add_nem cache_entry - tcs/cache.c
Synopsis:
TSS RESULT add_nem cache_entry(TCS_KEY HANDLE tcs_handl e,
TCPA_KEY_HANDLE t pm handl e, TCPA KEY *bl ob)

Description:
add_nem cache_ent ry createsanew TCS key cache entry for the key with handle
t cs_handl e if no entry exists with the same TCS key handle. t pm_handl e and
t cs_handl e aresetinthe new cache abject and its time stamp is set. New memory is
also alocated for a TCPA_KEY and bl ob is copied into the object of the new key cache
entry. Memory allocated isfreed if the key is explicitly evicted by acall to
Tspi _Key_Evi ctKey().

Return Vaues:
On success, or if acache entry with the same TCS handle exists, TSS_SUCCESS is
returned.

Synchronization:

52

The TCS key cache lock is held while the list is being searched.

Errors:
If mal | oc fails, TSS_E_OUTOFNMEMORY is returned.

set Sl ot By Sl ot - tcs/cache.c
Synopsis:
TSS RESULT set Sl ot BySl ot (Ul NT32 ol d_handl e, Ul NT32
new_handl e)

Description:
set Sl ot By Sl ot searchesthe TCS'skey cache for an entry with a
TCPA_KEY_HANDLE matching ol d_handl e. If found, it replaces the
TCPA_KEY_HANDLE in the cache entry with new_handl| e and updates the slot's time
stamp. set Sl ot By Sl ot isused by the TCSKCM to update a cache entry when akey is
loaded into the TPM that has been previously loaded.

Return Values:
On success, TSS_SUCCESS is returned.

Synchronization:
The TCS key cache lock is held while the list is being manipulated.

Errors:
If no cache entry hasaTCPA_KEY_HANDLE matchingol d_handl e, TCS_E_FAI L
isreturned.

set Sl ot ByHandl e - tcs/cache.c
Synopsis:
TSS RESULT set Sl ot ByHandl e(TCS_KEY_HANDLE t cs_handl e,
TCPA _KEY_HANDLE t pm handl e)

Description:
set Sl ot ByHandl e searchesthe TCS's key cache for an entry who's TCS key handle
matchest cs_handl e. If found, the entry's TCPA KEY_ HANDLE issetto
t pm_handl e and its time stamp is updated.

Return Values:
On success, TSS_SUCCESS is returned.

Synchronization:
The TCSkey cachelock is held while the list is being manipulated.

Errors:
If no key cache entry hasaTCS_KEY_HANDLE matchingt cs_handl e,
TCS_E FAI L isreturned.

renove_nem cache_entry —tcs/cache.c
Synopsis.
TSS RESULT renove_nmem cache_entry(TCS_KEY _HANDLE t cs_handl e)

Description:
renove_nem cache_ent ry searches through the TCS key cache for an entry with a

53

TCSkey handle matchingt cs_handl e. If found, the entry is removed from the cache.

Return Vaues:
None.

Synchronization:
The TCS key cache lock is held while the list is being manipul ated.

Errors:
If no cache entry matchest cs_handl e, TCS_E_FAI L isreturned.

set Uui dsByPub - tcs/cache.c
Synopsis:
TSS_RESULT set Uui dsByPub(TCPA_STORE_PUBKEY *pub, TSS_UU D
*uuid, TSS UUID *p_uuid)

Description:
set Uui dsByPub searches through the TCS key cache for an entry with a public key
matching pub. If found, the cache entry's UUID and parent UUID are set to uui d and
p_uui d respectively.

Return Values:
On success, set Uui dsByPub returns TSS_SUCCESS.

Synchronization:
The TCSkey cachelock is held while the list is being manipulated.

Errors:.
If no key's public data matches pub, TCS_E FAI L isreturned.

get Sl ot ByHandl| e — tcs/cache.c

Synopsis:
TCPA _KEY_HANDLE get Sl ot ByHandl e(TCS_KEY_HANDLE t cs_handl e)

Description:
get Sl ot ByHandl e searchesthrough the TCS key cache for an entry witha TCS
handle matchingt cs_handl e. If found, theentry's TCPA_KEY_ HANDLE isreturned.

Return Vaues:
On success, the entry's TCPA_KEY_HANDLE s returned.

Synchronization:
The TCS key cache lock is held while the list is being manipulated.

Errors:
If no cache entry's TCS handle matchest csHandl e, NULL_TPM HANDLE is returned.

get Sl ot ByPub - tcs/cache.c

Synopsis:
TCPA_KEY_HANDLE get Sl ot ByPub(TCPA_STORE_PUBKEY *pub)

Description:

get S| ot ByPub searches through the TCS key cache for an entry with a public key
matching pub. If found, the entry's TCPA_KEY_HANDLE isreturned.

54

Return Values:
On success, the entry's TCPA_KEY_HANDLE is returned.

Synchronization:;
The TCS key cache lock is held while the list is being searched.

Errors:
If no cache entry's public key matchespub, NULL_TPM HANDLE is returned.

get TCSKeyHandl eByPub - tcs/cache.c

Synopsis:
TCS_KEY_HANDLE get TCSKeyHandl eByPub(TCPA_STORE_PUBKEY *pub)

Description:
get TCSKeyHandl eByPub searches through the TCS key cache for an entry with a
public key matching pub. If found, the entry's TCS key handle is returned.

Return Values:
On success, the requested TCS key handleis returned.

Synchronization:
The TCSkey cachelock is held while the list is being searched.

Errors:
If no cache entry's public key matchespub, NULL_TCS HANDLE isreturned.

get Par ent PubByPub - tcs/cache.c

Synopsis:
TCPA_STORE_PUBKEY *get Par ent PubByPub(TCPA_STORE_PUBKEY *pub)

Description:
get Par ent PubByPub searches through the TCS key cache for an entry with a public
key matching pub. If found, areference to the entry's parent's public key is returned.

Return Vaues:
On success, areference to the requested key's parent's public key is returned.

Synchronization:
The TCSkey cachelock is held while the list is being searched.

Errors:.
If no cache entry's public key matches pub, NULL isreturned.

i sKeyl nMentCache - tcs/cache.c

Synopsis:
BOOL i sKeyl nMentCache(TCS_KEY_HANDLE t cs_handl e)

Description:
i sKeyl nMentCache searches through the TCS key cache for an entry with aTCS key
handle matchingt cs_Handl e. If found, TRUE isreturned. If the key is not found,
FALSE isreturned.

Return Vaues:

55

The existence of the key in the TCS key cacheis returned.

Synchronization:
The TCSkey cachelock is held while the list is being searched.

Errors:
None.

get Bl obByPub - tcs/cache.c
Synopsis.
TSS_RESULT get Bl obByPub(TCPA_STORE_PUBKEY *pub, TCPA KEY
**ret _key)

Description:
get Bl obByPub searches through the TCS key cache for an entry with a public key
matching pub. If found, areference to the key'sblob iscopiedinto*r et _key.

Return Values:
On success, *r et _key isset and TSS_SUCCESS is returned.

Synchronization;
The TCSkey cache lock is held while the list is being searched.

Errors:
If the requested key cannot be found, TCS_E _FAI L isreturned.

get Bl obBy Sl ot - tcs/cache.c
Synopsis:
TSS RESULT get Bl obBySI ot (TCPA_KEY_HANDLE t pm handl e,
TCPA_KEY **ret_key)

Description:
get Bl obByPub searchesthrough the TCS key cache for an entry with a
TCPA _KEY_HANDLE matchingt pm _handl e. If found, areferenceto thekey'sblobis
copiedinto*ret _key.

Return Vaues:
Onsuccess, *ret _key isset and TSS _SUCCESS is returned.

Synchronization:
The TCSkey cachelock is held while the list is being searched.

Errors:
If the requested TCPA_KEY_HANDLE cannot be found, TCS_E_FAI L isreturned.

get AnyHandl eBySl| ot - tcs/cache.c

Synopsis:
TCS_KEY_HANDLE get AnyHandl eBySl ot (TCPA_KEY_HANDLE
t pm_handl e)

Description:

get AnyHandl eBy Sl ot searchesthrough the TCS key cache for an entry with a
TCPA_KEY_HANDLE matching t pm_handl e. If found, the entry's TCS key handleis

56

returned.

Return Values:
On success, the requested entry's TCS key handle is returned.

Synchronization:
The TCSkey cachelock is held while the list is being searched.

Errors:
If no cached key matchest pm_handl e, NULL_TCS_HANDLE isreturned.

get KeyHandl eByUui d - tcs/cache.c

Synopsis:
TCS_KEY_HANDLE get KeyHandl eByUui d(TSS_UUI D * uui d)

Description:
get KeyHandl eByUui d searches through the TCS key cache for an entry with a
UUID matching uui d. If found, the entry's TCS key handle is returned.

Return Vaues:
On success, the requested entry's TCS key handle is returned.

Synchronization:
The TCS key cache lock is held while the list is being searched.

Errors:
If no cached key matchesuui d, NULL_TCS HANDLE isreturned.

ref reshTi neSt anpBy Sl ot - tcs/cache.c
Synopsis:
TSS RESULT refreshTi neSt anpByS| ot (TCPA_KEY_HANDLE
t pm_handl e)

Description:
ref reshTi meSt anpBy S| ot searches through the TCS key cache for an entry with a
key dot of t pm_handl e. If found, the entry's time stamp is updated.

Return Values:
On success, the requested entry's time stamp is updated.

Synchronization:
The TCS key cache lock is held while the list is being searched.

Errors:
If no cached key has akey sot matchingt pm_handl e, TCS_E FAI L isreturned.

3.6 TPM Auth Manager

The TPM Auth Manager keeps track of the maximum number of auth sessions available from the
TPM, the number of currently open auth sessions and who holds them, putting threads to sleep and waking
them up when auth sessions are and aren't available, and so on. A table is maintained which keeps track of
how many auth sessions are opened and which TCS/TPM handles are mapped to each other. Whenever a
thread requests a new auth handle through TCSP_OIAP and TCSP_OSAP, the auth manager coordinates all

S7

the resources required to make sure the thread getsiits auth handle.
3.6.0 Data Structures

struct aut h_mgr —include/tcsem.h

Theaut h_ngr structureis used to hold the attributes and variables needed to keep track of
current and outstanding auth handle requests made to the TPM. Included in the structure is a pointer to a
table of mappings which track the current open auth handles between the TCSD and the TPM.

struct aut h_map -include/tcsem.h
aut h_map isused to hold one element of the auth manager's auth mapping table. Thetable
records the mapping from a TCS handleto a TPM handle.

3.6.1 Functions

aut h_ngr _i ni t — tcs/auth_mgr.c

Synopsis:
TSS RESULT auth_ngr _init()

Description:
aut h_ngr _i nit setsthe max number of auth sessionsintheaut h_ngr structure,
allocates space for the auth mappings table and initializes the auth manager lock.

Return Values:
On success, TSS_SUCCESS is returned.

Synchronization:
None.

Errors:
None.

aut h_ngr _final —tcs/auth_mgr.c

Synopsis:
TSS_RESULT aut h_ngr _final ()

Description:
aut h_nmgr _fi nal sendsawakeup signal to al threads with pending auth requests on
the overflow queue, then free's the overflow structure.

Return Vaues:
On success, TSS_SUCCESS is returned.

Synchronization:
The auth manager lock is held while the overflow list is being touched.

Errors.
None.

aut h_ngr _swap_i n - fcs/auth_mgr.c

58

Synopsis:
voi d auth_mgr_swap_in()

Description:
aut h_ngr _swap_i n handles the case when a new auth context can be obtained from
the TPM. If we'reinteracting with a TPM that supports auth context swapping, the next
available thread is allowed to swap in its context [ed. not implemented]. If were
interacting witha TPM that doesn't support auth context swapping and thereis athread
sleeping on the overflow queue, it is awakened.

Return Vaues:
None.

Synchronization:
The caller must hold the auth manager lock.

Errors:
None.

aut h_ngr _swap_out —ftcs/auth_mgr.c

Synopsis:
TSS_RESULT aut h_ngr _swap_out (TCS_CONTEXT_HANDLE hCont ext)

Description:
aut h_ngr _swap_out handlesthe case when anew auth context is requested from the
TPM, but the TPM doesn't have the resourcesto deliver it. If we're interacting with a
TPM that supports auth context swapping, an inactive thread must have its auth context
swapped out of the TPM [ed. not yet implemented]. If we're interacting with a TPM that
doesn't support auth context swapping, the current thread is put on the overflow queue, to
be awakened when resources become available. If thisthread isthe last available running
thread, it cannot be put to sleep (since no other thread would be available to service new
requests), so TCPA RESOURCES isreturned, signalling the TSP to retry at alater time.

Return Values:
On success, the current thread's auth context is swapped out and TSS_SUCCESS is
returned.

Synchronization:;
The caller must hold the auth manager lock.

Errors:
If the condition variable cannot be obtained from the context when the thread is required
todeep, TSS_E | NTERNAL _ERRORisreturned. If the requesting thread is last
available thread and it must be put to sleep, TCPA RESOURCES is returned.

aut h_ngr _cl ose_cont ext —tcs/auth_mgr.c
Synopsis:
TSS RESULT aut h_ngr _cl ose_cont ext (TCS_CONTEXT_HANDLE
tcs_handl e)

Description:
aut h_ngr _cl ose_cont ext runsthrough the auth mappings table and terminates
any auth mappings associated witht cs_handl e with the TPM. If any auth mappings
areterminated, aut h_ngr _swap_i n isthen caled.

59

Return Values:
On success, al auth mappings associated witht cs_handl e are closed with the TPM
and TCS_SUCCESS is returned.

Synchronization:
The auth manager lock is held while the auth mappings table is traversed.

Errors:
None. If thecall to terminate the auth handle fails, an error islogged.

aut h_ngr _r el ease_aut h —tcs/auth_mgr.c
Synopsis:
TSS RESULT aut h_ngr _rel ease_aut h(TCS_AUTHHANDLE
t pm_aut h_handl e)

Description:
aut h_ngr _rel ease_aut h searchesthe auth mappings table for a TPM auth handle
matchingt pm aut h_handl e and if found, terminates that handle.
aut h_ngr_swap_i n isthencalled.

Return Values:
On success, the auth mapping associated witht pm_aut h_handl e are closed with the
TPM and TCS_SUCCESS is returned.

Synchronization:
The auth manager lock is held while the auth mappings table is traversed.

Errors:
None. If thecall to terminate the auth handle fails, an error islogged.

aut h_ngr _check - tcs/auth_mgr.c
Synopsis.
TSS_RESULT aut h_ngr _check(TCS_CONTEXT_HANDLE t csCont ext,
TCS_AUTHHANDLE t pm aut h_handl e)

Description:
aut h_ngr _check runsthrough the auth mappings table and if it finds an entry with
t csCont ext mappingtot pm aut h_handl e, returns TSS_SUCCESS.

Return Values:
On success, TCS_SUCCESS isreturned.

Synchronization;
The auth manager lock is held while the auth mappings table is traversed.

Errors:
If no mapping isfound, TSS_E | NTERNAL ERRORIsreturned.

aut h_ngr _add - tcs/auth_mgr.c

60

Synopsis:
TSS RESULT aut h_ngr_add(TCS_CONTEXT_HANDLE t csCont ext,
TCS_AUTHHANDLE t pm aut h_handl e)

Description:
aut h_ngr _add looksfor an empty slot in the auth mappings table and if found, adds
an entry, filling it witht csCont ext mappingtot pm aut h_handl e.

Return Values:
On success, TCS SUCCESS isreturned.

Synchronization:
The auth manager lock must be held by the caller.

Errors:
If no empty mapping spaceisfound, TSS E | NTERNAL_ERROR s returned.

aut h_ngr _r eq_new- tcs/auth_mgr.c

Synopsis:
TSS BOOL auth_ngr_req_new(TCS_CONTEXT HANDLE t csCont ext)

Description:
aut h_ngr _r eq_new checks the auth mappings table to see how many mappings are
currently opened for TCS context t csCont ext . If resources are available to allow the
context to open another context, TRUE is returned, else FALSE.

Return Values:
If another auth context can be opened for context t csCont ext , TRUE isreturned, else
FALSE.

Synchronization:
None.

Errors:
None.

aut h_ngr _oi ap - tcs/auth_mgr.c
Synopsis:
TSS RESULT aut h_ngr _oi ap(TCS_CONTEXT_HANDLE hCont ext ,
TCS_AUTHHANDLE *aut hHandl e, TCPA_NONCE *nonce0)

Description:
aut h_ngr _oi ap isawrapper for TCSP_O AP_I nt er nal which determinesif there
are enough resources available for another auth context to be opened. Once resources are
available, the parameters are passed through.

Return Values:
On success, thereturn value of aut h_ngr _add isreturned.

Synchronization:;
The auth manager lock is held.

Errors:

61

None.

TSS _RESULT

aut h_mgr _osap(TCS_CONTEXT_HANDLE hCont ext ,
TCPA_ENTI TY_TYPE entityType,
U NT32 entityVal ue,
TCPA_NONCE nonceOQddCSAP,
TCS_AUTHHANDLE *aut hHandl e,
TCPA_NONCE *nonceEven,
TCPA _NONCE *nonceEvenCSAP)

aut h_ngr _osap - tcs/auth_mgr.c
Synopsis:
TSS RESULT aut h_ngr _osap(TCS_CONTEXT HANDLE hCont ext,
TCPA_ENTI TY_TYPE entityType, U NT32 entityVal ue, TCPA_ NONCE
nonceCddCSAP, TCS AUTHHANDLE *aut hHandl e, TCPA NONCE
*nonceEven, TCPA _NONCE *nonceEvenOSAP)

Description:
aut h_ngr _osap isawrapper for TCSP_QOSAP_I nt er nal which determinesif there
are enough resources available for another auth context to be opened. Once resources are
available, the parameters are passed through.

Return Vaues:
On success, thereturn value of aut h_ngr _add isreturned.

Synchronization:
The auth manager lock is held.

Errors:
None.

3.7 Miscellaneous

The miscellaneous functions and data structures listed below do not fall into any of the
categories above, but are worth mentioning.

3.7.0 Functions

get TPMet ri cs() - tes/ext.c

Synopsis:
TSS RESULT get TPMvetri cs()

Description:
get TPMvet ri cs queriesthe TPM on TCS startup to find out information about it.
The TPM_GetCapability command isissued to the TPM to get values for the number of
PCR'sit contains, whether it supports the Save/L oadK eyContext and Save/L oad
AuthContext ordinals, etc. These values are then used to create the necessary data
structures managed by the TCS.

62

Return Vaues:
On success, get TPMMVet ri cs returns TSS_SUCCESS.

Synchronization:
None.

Errors:.
If aparticular query to the TPM fails, adefault valueis used in its placeif possible. If the
TPM cannot be queried, the error value is passed back to the caller.

3.8 TCSD Configuration File

The TCSD will read a configuration file at startup time and again when it receives the
SIGHUP signal. The configuration file will contain the following parameters:

The port that the TCSD will listen on for remote connections

The maximum number of threads allowed to be running in the TCSD simultaneously.
The location and name of the system persistent storage file

The paths to any external PCR log sources

The PCR's which will be controlled by external agents (firmware and kernel)

G W

4.0 Portability

In order to make this document easier to navigate, all portability related items will be
echoed in this section.

As stated in the TSS High Level Design document, the LTC TSS will make every attempt
to use only POSIX header files and interfaces in order to be as portable as possible.

Crypto:

Adding a new crypto implementation should be fairly straightforward:

1) Create a new directory, e.g. sr ¢/ t spi / crypt o/ nyCrypt o.

2) Inside this directory, add a file named 'cr ypt 0. ¢' which implements the functions in
section 2.3.0

3) Add a check in configure.in for your crypto library and headers (see the openssl
section of confi gur e. i n for an example). Make sure that the build system sets the variable
“CRYPTO_PACKAGE?” to the name of the directory you created in step 1. At build time,
src/tspi/crypto/ $CRYPTO PACKAGE/ cr ypt o. ¢ will be built.

One hurdle to implementing the cryptographic operations needed to interact with a
TPM is the fact that the TPM requires the OAEP padding parameter of RSA encrypt/decrypt
operations to be set to the NULL terminated string “TCPA”.

GUI:

In the same way that the cryptographic implementations are pluggable, the GUI
components will be as well. Di spl ayNewPl NW ndowand Di spl ayPl NW ndowwill be the
abstraction point here (these are the two functions called by popup_Get Secr et). In order to
add a new type of GUI component to drive the popup messages, do the following:

1) Create a new directory, e.g. sr ¢/ t spi / gui / myQui .

2) Inside this directory, create the files 'mai n. c', 'support.c','i nterface. ¢c'and
'cal | backs. ¢' which implement Di spl ayNewPl NW ndow() and Di spl ayPl NW ndow() .

63

3) Add a check in configure.in for your GUI library and headers (see the GTK section of
confi gure. in for an example). Make sure that the build system sets the variable “GUI_PATH”
to the name of the directory you created in step 1. At build time,
src/tspi/gui/$QU _PATH *. c will be built.

Memory Pinning:

The TSS 1.1 API specification states that secrets should be pinned in memory and
zeroed out prior to being freed. Since memory pinning is an OS specific operation, the
pi n_nenor y() function will need to be reimplemented.

Internationalization:

NLS support will be enabled through the gettext package. Since gettext may not be
available for all OS's, all gettext calls will be made part of the logging macros, found in
src/incl ude/ | og. h. This should make changing the library used for internationalization
easier. Also, visitconfi gure.inandsrc/tspi/Mkefile.amfor examples of adding new
internationalization library support at build time.

External Event Log Sources:

To define a new external event logging source, a new ext _| 0g_sour ce structure must
be defined and the functions in this structure must be also be created. The structure has
function pointers for opening the log source, closing the log source, getting a single log entry
from the source and getting multiple entries from the source. Using these 4 functions, the TCSD
functions can be implemented. For an example of an external log source implementation, see
include/limaem.h and tcs/imaem.c.

5.0 References

1. TCG Software Stack (TSS) Specification, Version 1.1. Trusted Computing Group, Incorporated.
August 20, 2003. (C) 2003.
http:/ /www.trustedcomputinggroup.org/downloads/TSS_Version__1.1.pdf

2. Trusted Computing Platform Alliance (TCPA) Main Specification Version 1.1b. Trusted

Computing Group, Incorporated. (C) 2003
http:/ /www.trustedcomputinggroup.org/downloads/Main_TCG_Arcitecture_v1_1b.zip

64

