/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_builder.h" #include "aco_ir.h" #include "common/sid.h" #include "util/memstream.h" #include #include #include namespace aco { struct constaddr_info { unsigned getpc_end; unsigned add_literal; }; struct asm_context { Program* program; enum chip_class chip_class; std::vector> branches; std::map constaddrs; const int16_t* opcode; // TODO: keep track of branch instructions referring blocks // and, when emitting the block, correct the offset in instr asm_context(Program* program_) : program(program_), chip_class(program->chip_class) { if (chip_class <= GFX7) opcode = &instr_info.opcode_gfx7[0]; else if (chip_class <= GFX9) opcode = &instr_info.opcode_gfx9[0]; else if (chip_class >= GFX10) opcode = &instr_info.opcode_gfx10[0]; } int subvector_begin_pos = -1; }; unsigned get_mimg_nsa_dwords(const Instruction* instr) { unsigned addr_dwords = instr->operands.size() - 3; for (unsigned i = 1; i < addr_dwords; i++) { if (instr->operands[3 + i].physReg() != instr->operands[3].physReg().advance(i * 4)) return DIV_ROUND_UP(addr_dwords - 1, 4); } return 0; } void emit_instruction(asm_context& ctx, std::vector& out, Instruction* instr) { /* lower remaining pseudo-instructions */ if (instr->opcode == aco_opcode::p_constaddr_getpc) { ctx.constaddrs[instr->operands[0].constantValue()].getpc_end = out.size() + 1; instr->opcode = aco_opcode::s_getpc_b64; instr->operands.pop_back(); } else if (instr->opcode == aco_opcode::p_constaddr_addlo) { ctx.constaddrs[instr->operands[1].constantValue()].add_literal = out.size() + 1; instr->opcode = aco_opcode::s_add_u32; instr->operands[1] = Operand::zero(); instr->operands[1].setFixed(PhysReg(255)); } uint32_t opcode = ctx.opcode[(int)instr->opcode]; if (opcode == (uint32_t)-1) { char* outmem; size_t outsize; struct u_memstream mem; u_memstream_open(&mem, &outmem, &outsize); FILE* const memf = u_memstream_get(&mem); fprintf(memf, "Unsupported opcode: "); aco_print_instr(instr, memf); u_memstream_close(&mem); aco_err(ctx.program, outmem); free(outmem); abort(); } switch (instr->format) { case Format::SOP2: { uint32_t encoding = (0b10 << 30); encoding |= opcode << 23; encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0; encoding |= instr->operands.size() >= 2 ? instr->operands[1].physReg() << 8 : 0; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPK: { SOPK_instruction& sopk = instr->sopk(); if (instr->opcode == aco_opcode::s_subvector_loop_begin) { assert(ctx.chip_class >= GFX10); assert(ctx.subvector_begin_pos == -1); ctx.subvector_begin_pos = out.size(); } else if (instr->opcode == aco_opcode::s_subvector_loop_end) { assert(ctx.chip_class >= GFX10); assert(ctx.subvector_begin_pos != -1); /* Adjust s_subvector_loop_begin instruction to the address after the end */ out[ctx.subvector_begin_pos] |= (out.size() - ctx.subvector_begin_pos); /* Adjust s_subvector_loop_end instruction to the address after the beginning */ sopk.imm = (uint16_t)(ctx.subvector_begin_pos - (int)out.size()); ctx.subvector_begin_pos = -1; } uint32_t encoding = (0b1011 << 28); encoding |= opcode << 23; encoding |= !instr->definitions.empty() && !(instr->definitions[0].physReg() == scc) ? instr->definitions[0].physReg() << 16 : !instr->operands.empty() && instr->operands[0].physReg() <= 127 ? instr->operands[0].physReg() << 16 : 0; encoding |= sopk.imm; out.push_back(encoding); break; } case Format::SOP1: { uint32_t encoding = (0b101111101 << 23); if (opcode >= 55 && ctx.chip_class <= GFX9) { assert(ctx.chip_class == GFX9 && opcode < 60); opcode = opcode - 4; } encoding |= !instr->definitions.empty() ? instr->definitions[0].physReg() << 16 : 0; encoding |= opcode << 8; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPC: { uint32_t encoding = (0b101111110 << 23); encoding |= opcode << 16; encoding |= instr->operands.size() == 2 ? instr->operands[1].physReg() << 8 : 0; encoding |= !instr->operands.empty() ? instr->operands[0].physReg() : 0; out.push_back(encoding); break; } case Format::SOPP: { SOPP_instruction& sopp = instr->sopp(); uint32_t encoding = (0b101111111 << 23); encoding |= opcode << 16; encoding |= (uint16_t)sopp.imm; if (sopp.block != -1) { sopp.pass_flags = 0; ctx.branches.emplace_back(out.size(), &sopp); } out.push_back(encoding); break; } case Format::SMEM: { SMEM_instruction& smem = instr->smem(); bool soe = instr->operands.size() >= (!instr->definitions.empty() ? 3 : 4); bool is_load = !instr->definitions.empty(); uint32_t encoding = 0; if (ctx.chip_class <= GFX7) { encoding = (0b11000 << 27); encoding |= opcode << 22; encoding |= instr->definitions.size() ? instr->definitions[0].physReg() << 15 : 0; encoding |= instr->operands.size() ? (instr->operands[0].physReg() >> 1) << 9 : 0; if (instr->operands.size() >= 2) { if (!instr->operands[1].isConstant()) { encoding |= instr->operands[1].physReg().reg(); } else if (instr->operands[1].constantValue() >= 1024) { encoding |= 255; /* SQ_SRC_LITERAL */ } else { encoding |= instr->operands[1].constantValue() >> 2; encoding |= 1 << 8; } } out.push_back(encoding); /* SMRD instructions can take a literal on GFX7 */ if (instr->operands.size() >= 2 && instr->operands[1].isConstant() && instr->operands[1].constantValue() >= 1024) out.push_back(instr->operands[1].constantValue() >> 2); return; } if (ctx.chip_class <= GFX9) { encoding = (0b110000 << 26); assert(!smem.dlc); /* Device-level coherent is not supported on GFX9 and lower */ encoding |= smem.nv ? 1 << 15 : 0; } else { encoding = (0b111101 << 26); assert(!smem.nv); /* Non-volatile is not supported on GFX10 */ encoding |= smem.dlc ? 1 << 14 : 0; } encoding |= opcode << 18; encoding |= smem.glc ? 1 << 16 : 0; if (ctx.chip_class <= GFX9) { if (instr->operands.size() >= 2) encoding |= instr->operands[1].isConstant() ? 1 << 17 : 0; /* IMM - immediate enable */ } if (ctx.chip_class == GFX9) { encoding |= soe ? 1 << 14 : 0; } if (is_load || instr->operands.size() >= 3) { /* SDATA */ encoding |= (is_load ? instr->definitions[0].physReg() : instr->operands[2].physReg()) << 6; } if (instr->operands.size() >= 1) { /* SBASE */ encoding |= instr->operands[0].physReg() >> 1; } out.push_back(encoding); encoding = 0; int32_t offset = 0; uint32_t soffset = ctx.chip_class >= GFX10 ? sgpr_null /* On GFX10 this is disabled by specifying SGPR_NULL */ : 0; /* On GFX9, it is disabled by the SOE bit (and it's not present on GFX8 and below) */ if (instr->operands.size() >= 2) { const Operand& op_off1 = instr->operands[1]; if (ctx.chip_class <= GFX9) { offset = op_off1.isConstant() ? op_off1.constantValue() : op_off1.physReg(); } else { /* GFX10 only supports constants in OFFSET, so put the operand in SOFFSET if it's an * SGPR */ if (op_off1.isConstant()) { offset = op_off1.constantValue(); } else { soffset = op_off1.physReg(); assert(!soe); /* There is no place to put the other SGPR offset, if any */ } } if (soe) { const Operand& op_off2 = instr->operands.back(); assert(ctx.chip_class >= GFX9); /* GFX8 and below don't support specifying a constant and an SGPR at the same time */ assert(!op_off2.isConstant()); soffset = op_off2.physReg(); } } encoding |= offset; encoding |= soffset << 25; out.push_back(encoding); return; } case Format::VOP2: { uint32_t encoding = 0; encoding |= opcode << 25; encoding |= (0xFF & instr->definitions[0].physReg()) << 17; encoding |= (0xFF & instr->operands[1].physReg()) << 9; encoding |= instr->operands[0].physReg(); out.push_back(encoding); break; } case Format::VOP1: { uint32_t encoding = (0b0111111 << 25); if (!instr->definitions.empty()) encoding |= (0xFF & instr->definitions[0].physReg()) << 17; encoding |= opcode << 9; if (!instr->operands.empty()) encoding |= instr->operands[0].physReg(); out.push_back(encoding); break; } case Format::VOPC: { uint32_t encoding = (0b0111110 << 25); encoding |= opcode << 17; encoding |= (0xFF & instr->operands[1].physReg()) << 9; encoding |= instr->operands[0].physReg(); out.push_back(encoding); break; } case Format::VINTRP: { Interp_instruction& interp = instr->vintrp(); uint32_t encoding = 0; if (instr->opcode == aco_opcode::v_interp_p1ll_f16 || instr->opcode == aco_opcode::v_interp_p1lv_f16 || instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || instr->opcode == aco_opcode::v_interp_p2_f16) { if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding = (0b110100 << 26); } else if (ctx.chip_class >= GFX10) { encoding = (0b110101 << 26); } else { unreachable("Unknown chip_class."); } encoding |= opcode << 16; encoding |= (0xFF & instr->definitions[0].physReg()); out.push_back(encoding); encoding = 0; encoding |= interp.attribute; encoding |= interp.component << 6; encoding |= instr->operands[0].physReg() << 9; if (instr->opcode == aco_opcode::v_interp_p2_f16 || instr->opcode == aco_opcode::v_interp_p2_legacy_f16 || instr->opcode == aco_opcode::v_interp_p1lv_f16) { encoding |= instr->operands[2].physReg() << 18; } out.push_back(encoding); } else { if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding = (0b110101 << 26); /* Vega ISA doc says 110010 but it's wrong */ } else { encoding = (0b110010 << 26); } assert(encoding); encoding |= (0xFF & instr->definitions[0].physReg()) << 18; encoding |= opcode << 16; encoding |= interp.attribute << 10; encoding |= interp.component << 8; if (instr->opcode == aco_opcode::v_interp_mov_f32) encoding |= (0x3 & instr->operands[0].constantValue()); else encoding |= (0xFF & instr->operands[0].physReg()); out.push_back(encoding); } break; } case Format::DS: { DS_instruction& ds = instr->ds(); uint32_t encoding = (0b110110 << 26); if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding |= opcode << 17; encoding |= (ds.gds ? 1 : 0) << 16; } else { encoding |= opcode << 18; encoding |= (ds.gds ? 1 : 0) << 17; } encoding |= ((0xFF & ds.offset1) << 8); encoding |= (0xFFFF & ds.offset0); out.push_back(encoding); encoding = 0; unsigned reg = !instr->definitions.empty() ? instr->definitions[0].physReg() : 0; encoding |= (0xFF & reg) << 24; reg = instr->operands.size() >= 3 && !(instr->operands[2].physReg() == m0) ? instr->operands[2].physReg() : 0; encoding |= (0xFF & reg) << 16; reg = instr->operands.size() >= 2 && !(instr->operands[1].physReg() == m0) ? instr->operands[1].physReg() : 0; encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[0].physReg()); out.push_back(encoding); break; } case Format::MUBUF: { MUBUF_instruction& mubuf = instr->mubuf(); uint32_t encoding = (0b111000 << 26); encoding |= opcode << 18; encoding |= (mubuf.lds ? 1 : 0) << 16; encoding |= (mubuf.glc ? 1 : 0) << 14; encoding |= (mubuf.idxen ? 1 : 0) << 13; assert(!mubuf.addr64 || ctx.chip_class <= GFX7); if (ctx.chip_class == GFX6 || ctx.chip_class == GFX7) encoding |= (mubuf.addr64 ? 1 : 0) << 15; encoding |= (mubuf.offen ? 1 : 0) << 12; if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { assert(!mubuf.dlc); /* Device-level coherent is not supported on GFX9 and lower */ encoding |= (mubuf.slc ? 1 : 0) << 17; } else if (ctx.chip_class >= GFX10) { encoding |= (mubuf.dlc ? 1 : 0) << 15; } encoding |= 0x0FFF & mubuf.offset; out.push_back(encoding); encoding = 0; if (ctx.chip_class <= GFX7 || ctx.chip_class >= GFX10) { encoding |= (mubuf.slc ? 1 : 0) << 22; } encoding |= instr->operands[2].physReg() << 24; encoding |= (mubuf.tfe ? 1 : 0) << 23; encoding |= (instr->operands[0].physReg() >> 2) << 16; unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg(); encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[1].physReg()); out.push_back(encoding); break; } case Format::MTBUF: { MTBUF_instruction& mtbuf = instr->mtbuf(); uint32_t img_format = ac_get_tbuffer_format(ctx.chip_class, mtbuf.dfmt, mtbuf.nfmt); uint32_t encoding = (0b111010 << 26); assert(img_format <= 0x7F); assert(!mtbuf.dlc || ctx.chip_class >= GFX10); encoding |= (mtbuf.dlc ? 1 : 0) << 15; /* DLC bit replaces one bit of the OPCODE on GFX10 */ encoding |= (mtbuf.glc ? 1 : 0) << 14; encoding |= (mtbuf.idxen ? 1 : 0) << 13; encoding |= (mtbuf.offen ? 1 : 0) << 12; encoding |= 0x0FFF & mtbuf.offset; encoding |= (img_format << 19); /* Handles both the GFX10 FORMAT and the old NFMT+DFMT */ if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding |= opcode << 15; } else { encoding |= (opcode & 0x07) << 16; /* 3 LSBs of 4-bit OPCODE */ } out.push_back(encoding); encoding = 0; encoding |= instr->operands[2].physReg() << 24; encoding |= (mtbuf.tfe ? 1 : 0) << 23; encoding |= (mtbuf.slc ? 1 : 0) << 22; encoding |= (instr->operands[0].physReg() >> 2) << 16; unsigned reg = instr->operands.size() > 3 ? instr->operands[3].physReg() : instr->definitions[0].physReg(); encoding |= (0xFF & reg) << 8; encoding |= (0xFF & instr->operands[1].physReg()); if (ctx.chip_class >= GFX10) { encoding |= (((opcode & 0x08) >> 3) << 21); /* MSB of 4-bit OPCODE */ } out.push_back(encoding); break; } case Format::MIMG: { unsigned nsa_dwords = get_mimg_nsa_dwords(instr); assert(!nsa_dwords || ctx.chip_class >= GFX10); MIMG_instruction& mimg = instr->mimg(); uint32_t encoding = (0b111100 << 26); encoding |= mimg.slc ? 1 << 25 : 0; encoding |= (opcode & 0x7f) << 18; encoding |= (opcode >> 7) & 1; encoding |= mimg.lwe ? 1 << 17 : 0; encoding |= mimg.tfe ? 1 << 16 : 0; encoding |= mimg.glc ? 1 << 13 : 0; encoding |= mimg.unrm ? 1 << 12 : 0; if (ctx.chip_class <= GFX9) { assert(!mimg.dlc); /* Device-level coherent is not supported on GFX9 and lower */ assert(!mimg.r128); encoding |= mimg.a16 ? 1 << 15 : 0; encoding |= mimg.da ? 1 << 14 : 0; } else { encoding |= mimg.r128 ? 1 << 15 : 0; /* GFX10: A16 moved to 2nd word, R128 replaces it in 1st word */ encoding |= nsa_dwords << 1; encoding |= mimg.dim << 3; /* GFX10: dimensionality instead of declare array */ encoding |= mimg.dlc ? 1 << 7 : 0; } encoding |= (0xF & mimg.dmask) << 8; out.push_back(encoding); encoding = (0xFF & instr->operands[3].physReg()); /* VADDR */ if (!instr->definitions.empty()) { encoding |= (0xFF & instr->definitions[0].physReg()) << 8; /* VDATA */ } else if (!instr->operands[2].isUndefined()) { encoding |= (0xFF & instr->operands[2].physReg()) << 8; /* VDATA */ } encoding |= (0x1F & (instr->operands[0].physReg() >> 2)) << 16; /* T# (resource) */ if (!instr->operands[1].isUndefined()) encoding |= (0x1F & (instr->operands[1].physReg() >> 2)) << 21; /* sampler */ assert(!mimg.d16 || ctx.chip_class >= GFX9); encoding |= mimg.d16 ? 1 << 31 : 0; if (ctx.chip_class >= GFX10) { /* GFX10: A16 still exists, but is in a different place */ encoding |= mimg.a16 ? 1 << 30 : 0; } out.push_back(encoding); if (nsa_dwords) { out.resize(out.size() + nsa_dwords); std::vector::iterator nsa = std::prev(out.end(), nsa_dwords); for (unsigned i = 0; i < instr->operands.size() - 4u; i++) nsa[i / 4] |= (0xFF & instr->operands[4 + i].physReg().reg()) << (i % 4 * 8); } break; } case Format::FLAT: case Format::SCRATCH: case Format::GLOBAL: { FLAT_instruction& flat = instr->flatlike(); uint32_t encoding = (0b110111 << 26); encoding |= opcode << 18; if (ctx.chip_class <= GFX9) { assert(flat.offset <= 0x1fff); encoding |= flat.offset & 0x1fff; } else if (instr->isFlat()) { /* GFX10 has a 12-bit immediate OFFSET field, * but it has a hw bug: it ignores the offset, called FlatSegmentOffsetBug */ assert(flat.offset == 0); } else { assert(flat.offset <= 0xfff); encoding |= flat.offset & 0xfff; } if (instr->isScratch()) encoding |= 1 << 14; else if (instr->isGlobal()) encoding |= 2 << 14; encoding |= flat.lds ? 1 << 13 : 0; encoding |= flat.glc ? 1 << 16 : 0; encoding |= flat.slc ? 1 << 17 : 0; if (ctx.chip_class >= GFX10) { assert(!flat.nv); encoding |= flat.dlc ? 1 << 12 : 0; } else { assert(!flat.dlc); } out.push_back(encoding); encoding = (0xFF & instr->operands[0].physReg()); if (!instr->definitions.empty()) encoding |= (0xFF & instr->definitions[0].physReg()) << 24; if (instr->operands.size() >= 3) encoding |= (0xFF & instr->operands[2].physReg()) << 8; if (!instr->operands[1].isUndefined()) { assert(ctx.chip_class >= GFX10 || instr->operands[1].physReg() != 0x7F); assert(instr->format != Format::FLAT); encoding |= instr->operands[1].physReg() << 16; } else if (instr->format != Format::FLAT || ctx.chip_class >= GFX10) { /* SADDR is actually used with FLAT on GFX10 */ if (ctx.chip_class <= GFX9) encoding |= 0x7F << 16; else encoding |= sgpr_null << 16; } encoding |= flat.nv ? 1 << 23 : 0; out.push_back(encoding); break; } case Format::EXP: { Export_instruction& exp = instr->exp(); uint32_t encoding; if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) { encoding = (0b110001 << 26); } else { encoding = (0b111110 << 26); } encoding |= exp.valid_mask ? 0b1 << 12 : 0; encoding |= exp.done ? 0b1 << 11 : 0; encoding |= exp.compressed ? 0b1 << 10 : 0; encoding |= exp.dest << 4; encoding |= exp.enabled_mask; out.push_back(encoding); encoding = 0xFF & exp.operands[0].physReg(); encoding |= (0xFF & exp.operands[1].physReg()) << 8; encoding |= (0xFF & exp.operands[2].physReg()) << 16; encoding |= (0xFF & exp.operands[3].physReg()) << 24; out.push_back(encoding); break; } case Format::PSEUDO: case Format::PSEUDO_BARRIER: if (instr->opcode != aco_opcode::p_unit_test) unreachable("Pseudo instructions should be lowered before assembly."); break; default: if (instr->isVOP3()) { VOP3_instruction& vop3 = instr->vop3(); if (instr->isVOP2()) { opcode = opcode + 0x100; } else if (instr->isVOP1()) { if (ctx.chip_class == GFX8 || ctx.chip_class == GFX9) opcode = opcode + 0x140; else opcode = opcode + 0x180; } else if (instr->isVOPC()) { opcode = opcode + 0x0; } else if (instr->isVINTRP()) { opcode = opcode + 0x270; } uint32_t encoding; if (ctx.chip_class <= GFX9) { encoding = (0b110100 << 26); } else if (ctx.chip_class >= GFX10) { encoding = (0b110101 << 26); } else { unreachable("Unknown chip_class."); } if (ctx.chip_class <= GFX7) { encoding |= opcode << 17; encoding |= (vop3.clamp ? 1 : 0) << 11; } else { encoding |= opcode << 16; encoding |= (vop3.clamp ? 1 : 0) << 15; } encoding |= vop3.opsel << 11; for (unsigned i = 0; i < 3; i++) encoding |= vop3.abs[i] << (8 + i); if (instr->definitions.size() == 2) encoding |= instr->definitions[1].physReg() << 8; encoding |= (0xFF & instr->definitions[0].physReg()); out.push_back(encoding); encoding = 0; if (instr->opcode == aco_opcode::v_interp_mov_f32) { encoding = 0x3 & instr->operands[0].constantValue(); } else if (instr->opcode == aco_opcode::v_writelane_b32_e64) { encoding |= instr->operands[0].physReg() << 0; encoding |= instr->operands[1].physReg() << 9; /* Encoding src2 works fine with hardware but breaks some disassemblers. */ } else { for (unsigned i = 0; i < instr->operands.size(); i++) encoding |= instr->operands[i].physReg() << (i * 9); } encoding |= vop3.omod << 27; for (unsigned i = 0; i < 3; i++) encoding |= vop3.neg[i] << (29 + i); out.push_back(encoding); } else if (instr->isVOP3P()) { VOP3P_instruction& vop3 = instr->vop3p(); uint32_t encoding; if (ctx.chip_class == GFX9) { encoding = (0b110100111 << 23); } else if (ctx.chip_class >= GFX10) { encoding = (0b110011 << 26); } else { unreachable("Unknown chip_class."); } encoding |= opcode << 16; encoding |= (vop3.clamp ? 1 : 0) << 15; encoding |= vop3.opsel_lo << 11; encoding |= ((vop3.opsel_hi & 0x4) ? 1 : 0) << 14; for (unsigned i = 0; i < 3; i++) encoding |= vop3.neg_hi[i] << (8 + i); encoding |= (0xFF & instr->definitions[0].physReg()); out.push_back(encoding); encoding = 0; for (unsigned i = 0; i < instr->operands.size(); i++) encoding |= instr->operands[i].physReg() << (i * 9); encoding |= (vop3.opsel_hi & 0x3) << 27; for (unsigned i = 0; i < 3; i++) encoding |= vop3.neg_lo[i] << (29 + i); out.push_back(encoding); } else if (instr->isDPP()) { assert(ctx.chip_class >= GFX8); DPP_instruction& dpp = instr->dpp(); /* first emit the instruction without the DPP operand */ Operand dpp_op = instr->operands[0]; instr->operands[0] = Operand(PhysReg{250}, v1); instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::DPP); emit_instruction(ctx, out, instr); uint32_t encoding = (0xF & dpp.row_mask) << 28; encoding |= (0xF & dpp.bank_mask) << 24; encoding |= dpp.abs[1] << 23; encoding |= dpp.neg[1] << 22; encoding |= dpp.abs[0] << 21; encoding |= dpp.neg[0] << 20; if (ctx.chip_class >= GFX10) encoding |= 1 << 18; /* set Fetch Inactive to match GFX9 behaviour */ encoding |= dpp.bound_ctrl << 19; encoding |= dpp.dpp_ctrl << 8; encoding |= (0xFF) & dpp_op.physReg(); out.push_back(encoding); return; } else if (instr->isSDWA()) { SDWA_instruction& sdwa = instr->sdwa(); /* first emit the instruction without the SDWA operand */ Operand sdwa_op = instr->operands[0]; instr->operands[0] = Operand(PhysReg{249}, v1); instr->format = (Format)((uint16_t)instr->format & ~(uint16_t)Format::SDWA); emit_instruction(ctx, out, instr); uint32_t encoding = 0; if (instr->isVOPC()) { if (instr->definitions[0].physReg() != vcc) { encoding |= instr->definitions[0].physReg() << 8; encoding |= 1 << 15; } encoding |= (sdwa.clamp ? 1 : 0) << 13; } else { encoding |= sdwa.dst_sel.to_sdwa_sel(instr->definitions[0].physReg().byte()) << 8; uint32_t dst_u = sdwa.dst_sel.sign_extend() ? 1 : 0; if (instr->definitions[0].bytes() < 4) /* dst_preserve */ dst_u = 2; encoding |= dst_u << 11; encoding |= (sdwa.clamp ? 1 : 0) << 13; encoding |= sdwa.omod << 14; } encoding |= sdwa.sel[0].to_sdwa_sel(sdwa_op.physReg().byte()) << 16; encoding |= sdwa.sel[0].sign_extend() ? 1 << 19 : 0; encoding |= sdwa.abs[0] << 21; encoding |= sdwa.neg[0] << 20; if (instr->operands.size() >= 2) { encoding |= sdwa.sel[1].to_sdwa_sel(instr->operands[1].physReg().byte()) << 24; encoding |= sdwa.sel[1].sign_extend() ? 1 << 27 : 0; encoding |= sdwa.abs[1] << 29; encoding |= sdwa.neg[1] << 28; } encoding |= 0xFF & sdwa_op.physReg(); encoding |= (sdwa_op.physReg() < 256) << 23; if (instr->operands.size() >= 2) encoding |= (instr->operands[1].physReg() < 256) << 31; out.push_back(encoding); } else { unreachable("unimplemented instruction format"); } break; } /* append literal dword */ for (const Operand& op : instr->operands) { if (op.isLiteral()) { out.push_back(op.constantValue()); break; } } } void emit_block(asm_context& ctx, std::vector& out, Block& block) { for (aco_ptr& instr : block.instructions) { #if 0 int start_idx = out.size(); std::cerr << "Encoding:\t" << std::endl; aco_print_instr(&*instr, stderr); std::cerr << std::endl; #endif emit_instruction(ctx, out, instr.get()); #if 0 for (int i = start_idx; i < out.size(); i++) std::cerr << "encoding: " << "0x" << std::setfill('0') << std::setw(8) << std::hex << out[i] << std::endl; #endif } } void fix_exports(asm_context& ctx, std::vector& out, Program* program) { bool exported = false; for (Block& block : program->blocks) { if (!(block.kind & block_kind_export_end)) continue; std::vector>::reverse_iterator it = block.instructions.rbegin(); while (it != block.instructions.rend()) { if ((*it)->isEXP()) { Export_instruction& exp = (*it)->exp(); if (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::NGG) { if (exp.dest >= V_008DFC_SQ_EXP_POS && exp.dest <= (V_008DFC_SQ_EXP_POS + 3)) { exp.done = true; exported = true; break; } } else { exp.done = true; exp.valid_mask = true; exported = true; break; } } else if ((*it)->definitions.size() && (*it)->definitions[0].physReg() == exec) break; ++it; } } if (!exported) { /* Abort in order to avoid a GPU hang. */ bool is_vertex_or_ngg = (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::NGG); aco_err(program, "Missing export in %s shader:", is_vertex_or_ngg ? "vertex or NGG" : "fragment"); aco_print_program(program, stderr); abort(); } } static void insert_code(asm_context& ctx, std::vector& out, unsigned insert_before, unsigned insert_count, const uint32_t* insert_data) { out.insert(out.begin() + insert_before, insert_data, insert_data + insert_count); /* Update the offset of each affected block */ for (Block& block : ctx.program->blocks) { if (block.offset >= insert_before) block.offset += insert_count; } /* Find first branch after the inserted code */ auto branch_it = std::find_if(ctx.branches.begin(), ctx.branches.end(), [insert_before](const auto& branch) -> bool { return (unsigned)branch.first >= insert_before; }); /* Update the locations of branches */ for (; branch_it != ctx.branches.end(); ++branch_it) branch_it->first += insert_count; /* Update the locations of p_constaddr instructions */ for (auto& constaddr : ctx.constaddrs) { constaddr_info& info = constaddr.second; if (info.getpc_end >= insert_before) info.getpc_end += insert_count; if (info.add_literal >= insert_before) info.add_literal += insert_count; } } static void fix_branches_gfx10(asm_context& ctx, std::vector& out) { /* Branches with an offset of 0x3f are buggy on GFX10, * we workaround by inserting NOPs if needed. */ bool gfx10_3f_bug = false; do { auto buggy_branch_it = std::find_if( ctx.branches.begin(), ctx.branches.end(), [&ctx](const auto& branch) -> bool { return ((int)ctx.program->blocks[branch.second->block].offset - branch.first - 1) == 0x3f; }); gfx10_3f_bug = buggy_branch_it != ctx.branches.end(); if (gfx10_3f_bug) { /* Insert an s_nop after the branch */ constexpr uint32_t s_nop_0 = 0xbf800000u; insert_code(ctx, out, buggy_branch_it->first + 1, 1, &s_nop_0); } } while (gfx10_3f_bug); } void emit_long_jump(asm_context& ctx, SOPP_instruction* branch, bool backwards, std::vector& out) { Builder bld(ctx.program); Definition def_tmp_lo(branch->definitions[0].physReg(), s1); Operand op_tmp_lo(branch->definitions[0].physReg(), s1); Definition def_tmp_hi(branch->definitions[0].physReg().advance(4), s1); Operand op_tmp_hi(branch->definitions[0].physReg().advance(4), s1); aco_ptr instr; if (branch->opcode != aco_opcode::s_branch) { /* for conditional branches, skip the long jump if the condition is false */ aco_opcode inv; switch (branch->opcode) { case aco_opcode::s_cbranch_scc0: inv = aco_opcode::s_cbranch_scc1; break; case aco_opcode::s_cbranch_scc1: inv = aco_opcode::s_cbranch_scc0; break; case aco_opcode::s_cbranch_vccz: inv = aco_opcode::s_cbranch_vccnz; break; case aco_opcode::s_cbranch_vccnz: inv = aco_opcode::s_cbranch_vccz; break; case aco_opcode::s_cbranch_execz: inv = aco_opcode::s_cbranch_execnz; break; case aco_opcode::s_cbranch_execnz: inv = aco_opcode::s_cbranch_execz; break; default: unreachable("Unhandled long jump."); } instr.reset(bld.sopp(inv, -1, 7)); emit_instruction(ctx, out, instr.get()); } /* create the new PC and stash SCC in the LSB */ instr.reset(bld.sop1(aco_opcode::s_getpc_b64, branch->definitions[0]).instr); emit_instruction(ctx, out, instr.get()); instr.reset(bld.sop2(aco_opcode::s_addc_u32, def_tmp_lo, op_tmp_lo, Operand::zero()).instr); instr->operands[1].setFixed(PhysReg{255}); /* this operand has to be a literal */ emit_instruction(ctx, out, instr.get()); branch->pass_flags = out.size(); instr.reset(bld.sop2(aco_opcode::s_addc_u32, def_tmp_hi, op_tmp_hi, Operand::c32(backwards ? UINT32_MAX : 0u)) .instr); emit_instruction(ctx, out, instr.get()); /* restore SCC and clear the LSB of the new PC */ instr.reset(bld.sopc(aco_opcode::s_bitcmp1_b32, def_tmp_lo, op_tmp_lo, Operand::zero()).instr); emit_instruction(ctx, out, instr.get()); instr.reset(bld.sop1(aco_opcode::s_bitset0_b32, def_tmp_lo, Operand::zero()).instr); emit_instruction(ctx, out, instr.get()); /* create the s_setpc_b64 to jump */ instr.reset( bld.sop1(aco_opcode::s_setpc_b64, Operand(branch->definitions[0].physReg(), s2)).instr); emit_instruction(ctx, out, instr.get()); } void fix_branches(asm_context& ctx, std::vector& out) { bool repeat = false; do { repeat = false; if (ctx.chip_class == GFX10) fix_branches_gfx10(ctx, out); for (std::pair& branch : ctx.branches) { int offset = (int)ctx.program->blocks[branch.second->block].offset - branch.first - 1; if ((offset < INT16_MIN || offset > INT16_MAX) && !branch.second->pass_flags) { std::vector long_jump; bool backwards = ctx.program->blocks[branch.second->block].offset < (unsigned)branch.first; emit_long_jump(ctx, branch.second, backwards, long_jump); out[branch.first] = long_jump[0]; insert_code(ctx, out, branch.first + 1, long_jump.size() - 1, long_jump.data() + 1); repeat = true; break; } if (branch.second->pass_flags) { int after_getpc = branch.first + branch.second->pass_flags - 2; offset = (int)ctx.program->blocks[branch.second->block].offset - after_getpc; out[branch.first + branch.second->pass_flags - 1] = offset * 4; } else { out[branch.first] &= 0xffff0000u; out[branch.first] |= (uint16_t)offset; } } } while (repeat); } void fix_constaddrs(asm_context& ctx, std::vector& out) { for (auto& constaddr : ctx.constaddrs) { constaddr_info& info = constaddr.second; out[info.add_literal] += (out.size() - info.getpc_end) * 4u; } } unsigned emit_program(Program* program, std::vector& code) { asm_context ctx(program); if (program->stage.hw == HWStage::VS || program->stage.hw == HWStage::FS || program->stage.hw == HWStage::NGG) fix_exports(ctx, code, program); for (Block& block : program->blocks) { block.offset = code.size(); emit_block(ctx, code, block); } fix_branches(ctx, code); unsigned exec_size = code.size() * sizeof(uint32_t); if (program->chip_class >= GFX10) { /* Pad output with s_code_end so instruction prefetching doesn't cause * page faults */ unsigned final_size = align(code.size() + 3 * 16, 16); while (code.size() < final_size) code.push_back(0xbf9f0000u); } fix_constaddrs(ctx, code); while (program->constant_data.size() % 4u) program->constant_data.push_back(0); /* Copy constant data */ code.insert(code.end(), (uint32_t*)program->constant_data.data(), (uint32_t*)(program->constant_data.data() + program->constant_data.size())); return exec_size; } } // namespace aco