/* * Copyright © 2019 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_builder.h" #include "aco_ir.h" #include #include #include #include namespace aco { namespace { struct State { Program* program; Block* block; std::vector> old_instructions; }; struct NOP_ctx_gfx6 { void join(const NOP_ctx_gfx6& other) { set_vskip_mode_then_vector = MAX2(set_vskip_mode_then_vector, other.set_vskip_mode_then_vector); valu_wr_vcc_then_vccz = MAX2(valu_wr_vcc_then_vccz, other.valu_wr_vcc_then_vccz); valu_wr_exec_then_execz = MAX2(valu_wr_exec_then_execz, other.valu_wr_exec_then_execz); valu_wr_vcc_then_div_fmas = MAX2(valu_wr_vcc_then_div_fmas, other.valu_wr_vcc_then_div_fmas); salu_wr_m0_then_gds_msg_ttrace = MAX2(salu_wr_m0_then_gds_msg_ttrace, other.salu_wr_m0_then_gds_msg_ttrace); valu_wr_exec_then_dpp = MAX2(valu_wr_exec_then_dpp, other.valu_wr_exec_then_dpp); salu_wr_m0_then_lds = MAX2(salu_wr_m0_then_lds, other.salu_wr_m0_then_lds); salu_wr_m0_then_moverel = MAX2(salu_wr_m0_then_moverel, other.salu_wr_m0_then_moverel); setreg_then_getsetreg = MAX2(setreg_then_getsetreg, other.setreg_then_getsetreg); vmem_store_then_wr_data |= other.vmem_store_then_wr_data; smem_clause |= other.smem_clause; smem_write |= other.smem_write; for (unsigned i = 0; i < BITSET_WORDS(128); i++) { smem_clause_read_write[i] |= other.smem_clause_read_write[i]; smem_clause_write[i] |= other.smem_clause_write[i]; } } bool operator==(const NOP_ctx_gfx6& other) { return set_vskip_mode_then_vector == other.set_vskip_mode_then_vector && valu_wr_vcc_then_vccz == other.valu_wr_vcc_then_vccz && valu_wr_exec_then_execz == other.valu_wr_exec_then_execz && valu_wr_vcc_then_div_fmas == other.valu_wr_vcc_then_div_fmas && vmem_store_then_wr_data == other.vmem_store_then_wr_data && salu_wr_m0_then_gds_msg_ttrace == other.salu_wr_m0_then_gds_msg_ttrace && valu_wr_exec_then_dpp == other.valu_wr_exec_then_dpp && salu_wr_m0_then_lds == other.salu_wr_m0_then_lds && salu_wr_m0_then_moverel == other.salu_wr_m0_then_moverel && setreg_then_getsetreg == other.setreg_then_getsetreg && smem_clause == other.smem_clause && smem_write == other.smem_write && BITSET_EQUAL(smem_clause_read_write, other.smem_clause_read_write) && BITSET_EQUAL(smem_clause_write, other.smem_clause_write); } void add_wait_states(unsigned amount) { if ((set_vskip_mode_then_vector -= amount) < 0) set_vskip_mode_then_vector = 0; if ((valu_wr_vcc_then_vccz -= amount) < 0) valu_wr_vcc_then_vccz = 0; if ((valu_wr_exec_then_execz -= amount) < 0) valu_wr_exec_then_execz = 0; if ((valu_wr_vcc_then_div_fmas -= amount) < 0) valu_wr_vcc_then_div_fmas = 0; if ((salu_wr_m0_then_gds_msg_ttrace -= amount) < 0) salu_wr_m0_then_gds_msg_ttrace = 0; if ((valu_wr_exec_then_dpp -= amount) < 0) valu_wr_exec_then_dpp = 0; if ((salu_wr_m0_then_lds -= amount) < 0) salu_wr_m0_then_lds = 0; if ((salu_wr_m0_then_moverel -= amount) < 0) salu_wr_m0_then_moverel = 0; if ((setreg_then_getsetreg -= amount) < 0) setreg_then_getsetreg = 0; vmem_store_then_wr_data.reset(); } /* setting MODE.vskip and then any vector op requires 2 wait states */ int8_t set_vskip_mode_then_vector = 0; /* VALU writing VCC/EXEC and then a VALU reading VCCZ/EXECZ requires 5 wait states */ int8_t valu_wr_vcc_then_vccz = 0; int8_t valu_wr_exec_then_execz = 0; /* VALU writing VCC followed by v_div_fmas require 4 wait states */ int8_t valu_wr_vcc_then_div_fmas = 0; /* SALU writing M0 followed by GDS, s_sendmsg or s_ttrace_data requires 1 wait state */ int8_t salu_wr_m0_then_gds_msg_ttrace = 0; /* VALU writing EXEC followed by DPP requires 5 wait states */ int8_t valu_wr_exec_then_dpp = 0; /* SALU writing M0 followed by some LDS instructions requires 1 wait state on GFX10 */ int8_t salu_wr_m0_then_lds = 0; /* SALU writing M0 followed by s_moverel requires 1 wait state on GFX9 */ int8_t salu_wr_m0_then_moverel = 0; /* s_setreg followed by a s_getreg/s_setreg of the same register needs 2 wait states * currently we don't look at the actual register */ int8_t setreg_then_getsetreg = 0; /* some memory instructions writing >64bit followed by a instructions * writing the VGPRs holding the writedata requires 1 wait state */ std::bitset<256> vmem_store_then_wr_data; /* we break up SMEM clauses that contain stores or overwrite an * operand/definition of another instruction in the clause */ bool smem_clause = false; bool smem_write = false; BITSET_DECLARE(smem_clause_read_write, 128) = {0}; BITSET_DECLARE(smem_clause_write, 128) = {0}; }; struct NOP_ctx_gfx10 { bool has_VOPC = false; bool has_nonVALU_exec_read = false; bool has_VMEM = false; bool has_branch_after_VMEM = false; bool has_DS = false; bool has_branch_after_DS = false; bool has_NSA_MIMG = false; bool has_writelane = false; std::bitset<128> sgprs_read_by_VMEM; std::bitset<128> sgprs_read_by_SMEM; void join(const NOP_ctx_gfx10& other) { has_VOPC |= other.has_VOPC; has_nonVALU_exec_read |= other.has_nonVALU_exec_read; has_VMEM |= other.has_VMEM; has_branch_after_VMEM |= other.has_branch_after_VMEM; has_DS |= other.has_DS; has_branch_after_DS |= other.has_branch_after_DS; has_NSA_MIMG |= other.has_NSA_MIMG; has_writelane |= other.has_writelane; sgprs_read_by_VMEM |= other.sgprs_read_by_VMEM; sgprs_read_by_SMEM |= other.sgprs_read_by_SMEM; } bool operator==(const NOP_ctx_gfx10& other) { return has_VOPC == other.has_VOPC && has_nonVALU_exec_read == other.has_nonVALU_exec_read && has_VMEM == other.has_VMEM && has_branch_after_VMEM == other.has_branch_after_VMEM && has_DS == other.has_DS && has_branch_after_DS == other.has_branch_after_DS && has_NSA_MIMG == other.has_NSA_MIMG && has_writelane == other.has_writelane && sgprs_read_by_VMEM == other.sgprs_read_by_VMEM && sgprs_read_by_SMEM == other.sgprs_read_by_SMEM; } }; int get_wait_states(aco_ptr& instr) { if (instr->opcode == aco_opcode::s_nop) return instr->sopp().imm + 1; else if (instr->opcode == aco_opcode::p_constaddr) return 3; /* lowered to 3 instructions in the assembler */ else return 1; } bool regs_intersect(PhysReg a_reg, unsigned a_size, PhysReg b_reg, unsigned b_size) { return a_reg > b_reg ? (a_reg - b_reg < b_size) : (b_reg - a_reg < a_size); } template bool handle_raw_hazard_instr(aco_ptr& pred, PhysReg reg, int* nops_needed, uint32_t* mask) { unsigned mask_size = util_last_bit(*mask); uint32_t writemask = 0; for (Definition& def : pred->definitions) { if (regs_intersect(reg, mask_size, def.physReg(), def.size())) { unsigned start = def.physReg() > reg ? def.physReg() - reg : 0; unsigned end = MIN2(mask_size, start + def.size()); writemask |= u_bit_consecutive(start, end - start); } } bool is_hazard = writemask != 0 && ((pred->isVALU() && Valu) || (pred->isVINTRP() && Vintrp) || (pred->isSALU() && Salu)); if (is_hazard) return true; *mask &= ~writemask; *nops_needed = MAX2(*nops_needed - get_wait_states(pred), 0); if (*mask == 0) *nops_needed = 0; return *nops_needed == 0; } template int handle_raw_hazard_internal(State& state, Block* block, int nops_needed, PhysReg reg, uint32_t mask, bool start_at_end) { if (block == state.block && start_at_end) { /* If it's the current block, block->instructions is incomplete. */ for (int pred_idx = state.old_instructions.size() - 1; pred_idx >= 0; pred_idx--) { aco_ptr& instr = state.old_instructions[pred_idx]; if (!instr) break; /* Instruction has been moved to block->instructions. */ if (handle_raw_hazard_instr(instr, reg, &nops_needed, &mask)) return nops_needed; } } for (int pred_idx = block->instructions.size() - 1; pred_idx >= 0; pred_idx--) { if (handle_raw_hazard_instr(block->instructions[pred_idx], reg, &nops_needed, &mask)) return nops_needed; } int res = 0; /* Loops require branch instructions, which count towards the wait * states. So even with loops this should finish unless nops_needed is some * huge value. */ for (unsigned lin_pred : block->linear_preds) { res = std::max(res, handle_raw_hazard_internal( state, &state.program->blocks[lin_pred], nops_needed, reg, mask, true)); } return res; } template void handle_raw_hazard(State& state, int* NOPs, int min_states, Operand op) { if (*NOPs >= min_states) return; int res = handle_raw_hazard_internal( state, state.block, min_states, op.physReg(), u_bit_consecutive(0, op.size()), false); *NOPs = MAX2(*NOPs, res); } static auto handle_valu_then_read_hazard = handle_raw_hazard; static auto handle_vintrp_then_read_hazard = handle_raw_hazard; static auto handle_valu_salu_then_read_hazard = handle_raw_hazard; void set_bitset_range(BITSET_WORD* words, unsigned start, unsigned size) { unsigned end = start + size - 1; unsigned start_mod = start % BITSET_WORDBITS; if (start_mod + size <= BITSET_WORDBITS) { BITSET_SET_RANGE_INSIDE_WORD(words, start, end); } else { unsigned first_size = BITSET_WORDBITS - start_mod; set_bitset_range(words, start, BITSET_WORDBITS - start_mod); set_bitset_range(words, start + first_size, size - first_size); } } bool test_bitset_range(BITSET_WORD* words, unsigned start, unsigned size) { unsigned end = start + size - 1; unsigned start_mod = start % BITSET_WORDBITS; if (start_mod + size <= BITSET_WORDBITS) { return BITSET_TEST_RANGE(words, start, end); } else { unsigned first_size = BITSET_WORDBITS - start_mod; return test_bitset_range(words, start, BITSET_WORDBITS - start_mod) || test_bitset_range(words, start + first_size, size - first_size); } } /* A SMEM clause is any group of consecutive SMEM instructions. The * instructions in this group may return out of order and/or may be replayed. * * To fix this potential hazard correctly, we have to make sure that when a * clause has more than one instruction, no instruction in the clause writes * to a register that is read by another instruction in the clause (including * itself). In this case, we have to break the SMEM clause by inserting non * SMEM instructions. * * SMEM clauses are only present on GFX8+, and only matter when XNACK is set. */ void handle_smem_clause_hazards(Program* program, NOP_ctx_gfx6& ctx, aco_ptr& instr, int* NOPs) { /* break off from previous SMEM clause if needed */ if (!*NOPs & (ctx.smem_clause || ctx.smem_write)) { /* Don't allow clauses with store instructions since the clause's * instructions may use the same address. */ if (ctx.smem_write || instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) { *NOPs = 1; } else if (program->dev.xnack_enabled) { for (Operand op : instr->operands) { if (!op.isConstant() && test_bitset_range(ctx.smem_clause_write, op.physReg(), op.size())) { *NOPs = 1; break; } } Definition def = instr->definitions[0]; if (!*NOPs && test_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size())) *NOPs = 1; } } } /* TODO: we don't handle accessing VCC using the actual SGPR instead of using the alias */ void handle_instruction_gfx6(State& state, NOP_ctx_gfx6& ctx, aco_ptr& instr, std::vector>& new_instructions) { /* check hazards */ int NOPs = 0; if (instr->isSMEM()) { if (state.program->chip_class == GFX6) { /* A read of an SGPR by SMRD instruction requires 4 wait states * when the SGPR was written by a VALU instruction. According to LLVM, * there is also an undocumented hardware behavior when the buffer * descriptor is written by a SALU instruction */ for (unsigned i = 0; i < instr->operands.size(); i++) { Operand op = instr->operands[i]; if (op.isConstant()) continue; bool is_buffer_desc = i == 0 && op.size() > 2; if (is_buffer_desc) handle_valu_salu_then_read_hazard(state, &NOPs, 4, op); else handle_valu_then_read_hazard(state, &NOPs, 4, op); } } handle_smem_clause_hazards(state.program, ctx, instr, &NOPs); } else if (instr->isSALU()) { if (instr->opcode == aco_opcode::s_setreg_b32 || instr->opcode == aco_opcode::s_setreg_imm32_b32 || instr->opcode == aco_opcode::s_getreg_b32) { NOPs = MAX2(NOPs, ctx.setreg_then_getsetreg); } if (state.program->chip_class == GFX9) { if (instr->opcode == aco_opcode::s_movrels_b32 || instr->opcode == aco_opcode::s_movrels_b64 || instr->opcode == aco_opcode::s_movreld_b32 || instr->opcode == aco_opcode::s_movreld_b64) { NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_moverel); } } if (instr->opcode == aco_opcode::s_sendmsg || instr->opcode == aco_opcode::s_ttracedata) NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace); } else if (instr->isDS() && instr->ds().gds) { NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_gds_msg_ttrace); } else if (instr->isVALU() || instr->isVINTRP()) { for (Operand op : instr->operands) { if (op.physReg() == vccz) NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_vccz); if (op.physReg() == execz) NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_execz); } if (instr->isDPP()) { NOPs = MAX2(NOPs, ctx.valu_wr_exec_then_dpp); handle_valu_then_read_hazard(state, &NOPs, 2, instr->operands[0]); } for (Definition def : instr->definitions) { if (def.regClass().type() != RegType::sgpr) { for (unsigned i = 0; i < def.size(); i++) NOPs = MAX2(NOPs, ctx.vmem_store_then_wr_data[(def.physReg() & 0xff) + i]); } } if ((instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64 || instr->opcode == aco_opcode::v_writelane_b32 || instr->opcode == aco_opcode::v_writelane_b32_e64) && !instr->operands[1].isConstant()) { handle_valu_then_read_hazard(state, &NOPs, 4, instr->operands[1]); } /* It's required to insert 1 wait state if the dst VGPR of any v_interp_* * is followed by a read with v_readfirstlane or v_readlane to fix GPU * hangs on GFX6. Note that v_writelane_* is apparently not affected. * This hazard isn't documented anywhere but AMD confirmed that hazard. */ if (state.program->chip_class == GFX6 && (instr->opcode == aco_opcode::v_readlane_b32 || /* GFX6 doesn't have v_readlane_b32_e64 */ instr->opcode == aco_opcode::v_readfirstlane_b32)) { handle_vintrp_then_read_hazard(state, &NOPs, 1, instr->operands[0]); } if (instr->opcode == aco_opcode::v_div_fmas_f32 || instr->opcode == aco_opcode::v_div_fmas_f64) NOPs = MAX2(NOPs, ctx.valu_wr_vcc_then_div_fmas); } else if (instr->isVMEM() || instr->isFlatLike()) { /* If the VALU writes the SGPR that is used by a VMEM, the user must add five wait states. */ for (Operand op : instr->operands) { if (!op.isConstant() && !op.isUndefined() && op.regClass().type() == RegType::sgpr) handle_valu_then_read_hazard(state, &NOPs, 5, op); } } if (!instr->isSALU() && instr->format != Format::SMEM) NOPs = MAX2(NOPs, ctx.set_vskip_mode_then_vector); if (state.program->chip_class == GFX9) { bool lds_scratch_global = (instr->isScratch() || instr->isGlobal()) && instr->flatlike().lds; if (instr->isVINTRP() || lds_scratch_global || instr->opcode == aco_opcode::ds_read_addtid_b32 || instr->opcode == aco_opcode::ds_write_addtid_b32 || instr->opcode == aco_opcode::buffer_store_lds_dword) { NOPs = MAX2(NOPs, ctx.salu_wr_m0_then_lds); } } ctx.add_wait_states(NOPs + get_wait_states(instr)); // TODO: try to schedule the NOP-causing instruction up to reduce the number of stall cycles if (NOPs) { /* create NOP */ aco_ptr nop{ create_instruction(aco_opcode::s_nop, Format::SOPP, 0, 0)}; nop->imm = NOPs - 1; nop->block = -1; new_instructions.emplace_back(std::move(nop)); } /* update information to check for later hazards */ if ((ctx.smem_clause || ctx.smem_write) && (NOPs || instr->format != Format::SMEM)) { ctx.smem_clause = false; ctx.smem_write = false; if (state.program->dev.xnack_enabled) { BITSET_ZERO(ctx.smem_clause_read_write); BITSET_ZERO(ctx.smem_clause_write); } } if (instr->isSMEM()) { if (instr->definitions.empty() || instr_info.is_atomic[(unsigned)instr->opcode]) { ctx.smem_write = true; } else { ctx.smem_clause = true; if (state.program->dev.xnack_enabled) { for (Operand op : instr->operands) { if (!op.isConstant()) { set_bitset_range(ctx.smem_clause_read_write, op.physReg(), op.size()); } } Definition def = instr->definitions[0]; set_bitset_range(ctx.smem_clause_read_write, def.physReg(), def.size()); set_bitset_range(ctx.smem_clause_write, def.physReg(), def.size()); } } } else if (instr->isVALU()) { for (Definition def : instr->definitions) { if (def.regClass().type() == RegType::sgpr) { if (def.physReg() == vcc || def.physReg() == vcc_hi) { ctx.valu_wr_vcc_then_vccz = 5; ctx.valu_wr_vcc_then_div_fmas = 4; } if (def.physReg() == exec || def.physReg() == exec_hi) { ctx.valu_wr_exec_then_execz = 5; ctx.valu_wr_exec_then_dpp = 5; } } } } else if (instr->isSALU() && !instr->definitions.empty()) { if (!instr->definitions.empty()) { /* all other definitions should be SCC */ Definition def = instr->definitions[0]; if (def.physReg() == m0) { ctx.salu_wr_m0_then_gds_msg_ttrace = 1; ctx.salu_wr_m0_then_lds = 1; ctx.salu_wr_m0_then_moverel = 1; } } else if (instr->opcode == aco_opcode::s_setreg_b32 || instr->opcode == aco_opcode::s_setreg_imm32_b32) { SOPK_instruction& sopk = instr->sopk(); unsigned offset = (sopk.imm >> 6) & 0x1f; unsigned size = ((sopk.imm >> 11) & 0x1f) + 1; unsigned reg = sopk.imm & 0x3f; ctx.setreg_then_getsetreg = 2; if (reg == 1 && offset >= 28 && size > (28 - offset)) ctx.set_vskip_mode_then_vector = 2; } } else if (instr->isVMEM() || instr->isFlatLike()) { /* >64-bit MUBUF/MTBUF store with a constant in SOFFSET */ bool consider_buf = (instr->isMUBUF() || instr->isMTBUF()) && instr->operands.size() == 4 && instr->operands[3].size() > 2 && instr->operands[2].physReg() >= 128; /* MIMG store with a 128-bit T# with more than two bits set in dmask (making it a >64-bit * store) */ bool consider_mimg = instr->isMIMG() && instr->operands[1].regClass().type() == RegType::vgpr && instr->operands[1].size() > 2 && instr->operands[0].size() == 4; /* FLAT/GLOBAL/SCRATCH store with >64-bit data */ bool consider_flat = instr->isFlatLike() && instr->operands.size() == 3 && instr->operands[2].size() > 2; if (consider_buf || consider_mimg || consider_flat) { PhysReg wrdata = instr->operands[consider_flat ? 2 : 3].physReg(); unsigned size = instr->operands[consider_flat ? 2 : 3].size(); for (unsigned i = 0; i < size; i++) ctx.vmem_store_then_wr_data[(wrdata & 0xff) + i] = 1; } } } template bool check_written_regs(const aco_ptr& instr, const std::bitset& check_regs) { return std::any_of(instr->definitions.begin(), instr->definitions.end(), [&check_regs](const Definition& def) -> bool { bool writes_any = false; for (unsigned i = 0; i < def.size(); i++) { unsigned def_reg = def.physReg() + i; writes_any |= def_reg < check_regs.size() && check_regs[def_reg]; } return writes_any; }); } template void mark_read_regs(const aco_ptr& instr, std::bitset& reg_reads) { for (const Operand& op : instr->operands) { for (unsigned i = 0; i < op.size(); i++) { unsigned reg = op.physReg() + i; if (reg < reg_reads.size()) reg_reads.set(reg); } } } bool VALU_writes_sgpr(aco_ptr& instr) { if (instr->isVOPC()) return true; if (instr->isVOP3() && instr->definitions.size() == 2) return true; if (instr->opcode == aco_opcode::v_readfirstlane_b32 || instr->opcode == aco_opcode::v_readlane_b32 || instr->opcode == aco_opcode::v_readlane_b32_e64) return true; return false; } bool instr_writes_exec(const aco_ptr& instr) { return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition& def) -> bool { return def.physReg() == exec_lo || def.physReg() == exec_hi; }); } bool instr_writes_sgpr(const aco_ptr& instr) { return std::any_of(instr->definitions.begin(), instr->definitions.end(), [](const Definition& def) -> bool { return def.getTemp().type() == RegType::sgpr; }); } inline bool instr_is_branch(const aco_ptr& instr) { return instr->opcode == aco_opcode::s_branch || instr->opcode == aco_opcode::s_cbranch_scc0 || instr->opcode == aco_opcode::s_cbranch_scc1 || instr->opcode == aco_opcode::s_cbranch_vccz || instr->opcode == aco_opcode::s_cbranch_vccnz || instr->opcode == aco_opcode::s_cbranch_execz || instr->opcode == aco_opcode::s_cbranch_execnz || instr->opcode == aco_opcode::s_cbranch_cdbgsys || instr->opcode == aco_opcode::s_cbranch_cdbguser || instr->opcode == aco_opcode::s_cbranch_cdbgsys_or_user || instr->opcode == aco_opcode::s_cbranch_cdbgsys_and_user || instr->opcode == aco_opcode::s_subvector_loop_begin || instr->opcode == aco_opcode::s_subvector_loop_end || instr->opcode == aco_opcode::s_setpc_b64 || instr->opcode == aco_opcode::s_swappc_b64 || instr->opcode == aco_opcode::s_getpc_b64 || instr->opcode == aco_opcode::s_call_b64; } void handle_instruction_gfx10(State& state, NOP_ctx_gfx10& ctx, aco_ptr& instr, std::vector>& new_instructions) { // TODO: s_dcache_inv needs to be in it's own group on GFX10 /* VMEMtoScalarWriteHazard * Handle EXEC/M0/SGPR write following a VMEM instruction without a VALU or "waitcnt vmcnt(0)" * in-between. */ if (instr->isVMEM() || instr->isFlatLike() || instr->isDS()) { /* Remember all SGPRs that are read by the VMEM instruction */ mark_read_regs(instr, ctx.sgprs_read_by_VMEM); ctx.sgprs_read_by_VMEM.set(exec); if (state.program->wave_size == 64) ctx.sgprs_read_by_VMEM.set(exec_hi); } else if (instr->isSALU() || instr->isSMEM()) { if (instr->opcode == aco_opcode::s_waitcnt) { /* Hazard is mitigated by "s_waitcnt vmcnt(0)" */ uint16_t imm = instr->sopp().imm; unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10); if (vmcnt == 0) ctx.sgprs_read_by_VMEM.reset(); } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) { /* Hazard is mitigated by a s_waitcnt_depctr with a magic imm */ if (instr->sopp().imm == 0xffe3) ctx.sgprs_read_by_VMEM.reset(); } /* Check if SALU writes an SGPR that was previously read by the VALU */ if (check_written_regs(instr, ctx.sgprs_read_by_VMEM)) { ctx.sgprs_read_by_VMEM.reset(); /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */ aco_ptr depctr{ create_instruction(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)}; depctr->imm = 0xffe3; depctr->block = -1; new_instructions.emplace_back(std::move(depctr)); } } else if (instr->isVALU()) { /* Hazard is mitigated by any VALU instruction */ ctx.sgprs_read_by_VMEM.reset(); } /* VcmpxPermlaneHazard * Handle any permlane following a VOPC instruction, insert v_mov between them. */ if (instr->isVOPC()) { ctx.has_VOPC = true; } else if (ctx.has_VOPC && (instr->opcode == aco_opcode::v_permlane16_b32 || instr->opcode == aco_opcode::v_permlanex16_b32)) { ctx.has_VOPC = false; /* v_nop would be discarded by SQ, so use v_mov with the first operand of the permlane */ aco_ptr v_mov{ create_instruction(aco_opcode::v_mov_b32, Format::VOP1, 1, 1)}; v_mov->definitions[0] = Definition(instr->operands[0].physReg(), v1); v_mov->operands[0] = Operand(instr->operands[0].physReg(), v1); new_instructions.emplace_back(std::move(v_mov)); } else if (instr->isVALU() && instr->opcode != aco_opcode::v_nop) { ctx.has_VOPC = false; } /* VcmpxExecWARHazard * Handle any VALU instruction writing the exec mask after it was read by a non-VALU instruction. */ if (!instr->isVALU() && instr->reads_exec()) { ctx.has_nonVALU_exec_read = true; } else if (instr->isVALU()) { if (instr_writes_exec(instr)) { ctx.has_nonVALU_exec_read = false; /* Insert s_waitcnt_depctr instruction with magic imm to mitigate the problem */ aco_ptr depctr{ create_instruction(aco_opcode::s_waitcnt_depctr, Format::SOPP, 0, 0)}; depctr->imm = 0xfffe; depctr->block = -1; new_instructions.emplace_back(std::move(depctr)); } else if (instr_writes_sgpr(instr)) { /* Any VALU instruction that writes an SGPR mitigates the problem */ ctx.has_nonVALU_exec_read = false; } } else if (instr->opcode == aco_opcode::s_waitcnt_depctr) { /* s_waitcnt_depctr can mitigate the problem if it has a magic imm */ if ((instr->sopp().imm & 0xfffe) == 0xfffe) ctx.has_nonVALU_exec_read = false; } /* SMEMtoVectorWriteHazard * Handle any VALU instruction writing an SGPR after an SMEM reads it. */ if (instr->isSMEM()) { /* Remember all SGPRs that are read by the SMEM instruction */ mark_read_regs(instr, ctx.sgprs_read_by_SMEM); } else if (VALU_writes_sgpr(instr)) { /* Check if VALU writes an SGPR that was previously read by SMEM */ if (check_written_regs(instr, ctx.sgprs_read_by_SMEM)) { ctx.sgprs_read_by_SMEM.reset(); /* Insert s_mov to mitigate the problem */ aco_ptr s_mov{ create_instruction(aco_opcode::s_mov_b32, Format::SOP1, 1, 1)}; s_mov->definitions[0] = Definition(sgpr_null, s1); s_mov->operands[0] = Operand::zero(); new_instructions.emplace_back(std::move(s_mov)); } } else if (instr->isSALU()) { if (instr->format != Format::SOPP) { /* SALU can mitigate the hazard */ ctx.sgprs_read_by_SMEM.reset(); } else { /* Reducing lgkmcnt count to 0 always mitigates the hazard. */ const SOPP_instruction& sopp = instr->sopp(); if (sopp.opcode == aco_opcode::s_waitcnt_lgkmcnt) { if (sopp.imm == 0 && sopp.definitions[0].physReg() == sgpr_null) ctx.sgprs_read_by_SMEM.reset(); } else if (sopp.opcode == aco_opcode::s_waitcnt) { unsigned lgkm = (sopp.imm >> 8) & 0x3f; if (lgkm == 0) ctx.sgprs_read_by_SMEM.reset(); } } } /* LdsBranchVmemWARHazard * Handle VMEM/GLOBAL/SCRATCH->branch->DS and DS->branch->VMEM/GLOBAL/SCRATCH patterns. */ if (instr->isVMEM() || instr->isGlobal() || instr->isScratch()) { ctx.has_VMEM = true; ctx.has_branch_after_VMEM = false; /* Mitigation for DS is needed only if there was already a branch after */ ctx.has_DS = ctx.has_branch_after_DS; } else if (instr->isDS()) { ctx.has_DS = true; ctx.has_branch_after_DS = false; /* Mitigation for VMEM is needed only if there was already a branch after */ ctx.has_VMEM = ctx.has_branch_after_VMEM; } else if (instr_is_branch(instr)) { ctx.has_branch_after_VMEM = ctx.has_VMEM; ctx.has_branch_after_DS = ctx.has_DS; } else if (instr->opcode == aco_opcode::s_waitcnt_vscnt) { /* Only s_waitcnt_vscnt can mitigate the hazard */ const SOPK_instruction& sopk = instr->sopk(); if (sopk.definitions[0].physReg() == sgpr_null && sopk.imm == 0) ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false; } if ((ctx.has_VMEM && ctx.has_branch_after_DS) || (ctx.has_DS && ctx.has_branch_after_VMEM)) { ctx.has_VMEM = ctx.has_branch_after_VMEM = ctx.has_DS = ctx.has_branch_after_DS = false; /* Insert s_waitcnt_vscnt to mitigate the problem */ aco_ptr wait{ create_instruction(aco_opcode::s_waitcnt_vscnt, Format::SOPK, 0, 1)}; wait->definitions[0] = Definition(sgpr_null, s1); wait->imm = 0; new_instructions.emplace_back(std::move(wait)); } /* NSAToVMEMBug * Handles NSA MIMG (4 or more dwords) immediately followed by MUBUF/MTBUF (with offset[2:1] != * 0). */ if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 1) { ctx.has_NSA_MIMG = true; } else if (ctx.has_NSA_MIMG) { ctx.has_NSA_MIMG = false; if (instr->isMUBUF() || instr->isMTBUF()) { uint32_t offset = instr->isMUBUF() ? instr->mubuf().offset : instr->mtbuf().offset; if (offset & 6) Builder(state.program, &new_instructions).sopp(aco_opcode::s_nop, -1, 0); } } /* waNsaCannotFollowWritelane * Handles NSA MIMG immediately following a v_writelane_b32. */ if (instr->opcode == aco_opcode::v_writelane_b32_e64) { ctx.has_writelane = true; } else if (ctx.has_writelane) { ctx.has_writelane = false; if (instr->isMIMG() && get_mimg_nsa_dwords(instr.get()) > 0) Builder(state.program, &new_instructions).sopp(aco_opcode::s_nop, -1, 0); } } template using HandleInstr = void (*)(State& state, Ctx&, aco_ptr&, std::vector>&); template Handle> void handle_block(Program* program, Ctx& ctx, Block& block) { if (block.instructions.empty()) return; State state; state.program = program; state.block = █ state.old_instructions = std::move(block.instructions); block.instructions.clear(); // Silence clang-analyzer-cplusplus.Move warning block.instructions.reserve(state.old_instructions.size()); for (aco_ptr& instr : state.old_instructions) { Handle(state, ctx, instr, block.instructions); block.instructions.emplace_back(std::move(instr)); } } template Handle> void mitigate_hazards(Program* program) { std::vector all_ctx(program->blocks.size()); std::stack> loop_header_indices; for (unsigned i = 0; i < program->blocks.size(); i++) { Block& block = program->blocks[i]; Ctx& ctx = all_ctx[i]; if (block.kind & block_kind_loop_header) { loop_header_indices.push(i); } else if (block.kind & block_kind_loop_exit) { /* Go through the whole loop again */ for (unsigned idx = loop_header_indices.top(); idx < i; idx++) { Ctx loop_block_ctx; for (unsigned b : program->blocks[idx].linear_preds) loop_block_ctx.join(all_ctx[b]); handle_block(program, loop_block_ctx, program->blocks[idx]); /* We only need to continue if the loop header context changed */ if (idx == loop_header_indices.top() && loop_block_ctx == all_ctx[idx]) break; all_ctx[idx] = loop_block_ctx; } loop_header_indices.pop(); } for (unsigned b : block.linear_preds) ctx.join(all_ctx[b]); handle_block(program, ctx, block); } } } /* end namespace */ void insert_NOPs(Program* program) { if (program->chip_class >= GFX10_3) ; /* no hazards/bugs to mitigate */ else if (program->chip_class >= GFX10) mitigate_hazards(program); else mitigate_hazards(program); } } // namespace aco