/* * Copyright © 2018 Google * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_interface.h" #include "aco_ir.h" #include "vulkan/radv_shader.h" #include "vulkan/radv_shader_args.h" #include "util/memstream.h" #include #include #include static const std::array statistic_infos = []() { std::array ret{}; ret[aco::statistic_hash] = aco_compiler_statistic_info{"Hash", "CRC32 hash of code and constant data"}; ret[aco::statistic_instructions] = aco_compiler_statistic_info{"Instructions", "Instruction count"}; ret[aco::statistic_copies] = aco_compiler_statistic_info{"Copies", "Copy instructions created for pseudo-instructions"}; ret[aco::statistic_branches] = aco_compiler_statistic_info{"Branches", "Branch instructions"}; ret[aco::statistic_latency] = aco_compiler_statistic_info{"Latency", "Issue cycles plus stall cycles"}; ret[aco::statistic_inv_throughput] = aco_compiler_statistic_info{ "Inverse Throughput", "Estimated busy cycles to execute one wave"}; ret[aco::statistic_vmem_clauses] = aco_compiler_statistic_info{ "VMEM Clause", "Number of VMEM clauses (includes 1-sized clauses)"}; ret[aco::statistic_smem_clauses] = aco_compiler_statistic_info{ "SMEM Clause", "Number of SMEM clauses (includes 1-sized clauses)"}; ret[aco::statistic_sgpr_presched] = aco_compiler_statistic_info{"Pre-Sched SGPRs", "SGPR usage before scheduling"}; ret[aco::statistic_vgpr_presched] = aco_compiler_statistic_info{"Pre-Sched VGPRs", "VGPR usage before scheduling"}; return ret; }(); const unsigned aco_num_statistics = aco::num_statistics; const aco_compiler_statistic_info* aco_statistic_infos = statistic_infos.data(); static void validate(aco::Program* program) { if (!(aco::debug_flags & aco::DEBUG_VALIDATE_IR)) return; ASSERTED bool is_valid = aco::validate_ir(program); assert(is_valid); } void aco_compile_shader(unsigned shader_count, struct nir_shader* const* shaders, struct radv_shader_binary** binary, const struct radv_shader_args* args) { aco::init(); ac_shader_config config = {0}; std::unique_ptr program{new aco::Program}; program->collect_statistics = args->options->record_stats; if (program->collect_statistics) memset(program->statistics, 0, sizeof(program->statistics)); program->debug.func = args->options->debug.func; program->debug.private_data = args->options->debug.private_data; /* Instruction Selection */ if (args->is_gs_copy_shader) aco::select_gs_copy_shader(program.get(), shaders[0], &config, args); else if (args->is_trap_handler_shader) aco::select_trap_handler_shader(program.get(), shaders[0], &config, args); else aco::select_program(program.get(), shader_count, shaders, &config, args); if (args->options->dump_preoptir) aco_print_program(program.get(), stderr); aco::live live_vars; if (!args->is_trap_handler_shader) { /* Phi lowering */ aco::lower_phis(program.get()); aco::dominator_tree(program.get()); validate(program.get()); /* Optimization */ if (!args->options->key.optimisations_disabled) { if (!(aco::debug_flags & aco::DEBUG_NO_VN)) aco::value_numbering(program.get()); if (!(aco::debug_flags & aco::DEBUG_NO_OPT)) aco::optimize(program.get()); } /* cleanup and exec mask handling */ aco::setup_reduce_temp(program.get()); aco::insert_exec_mask(program.get()); validate(program.get()); /* spilling and scheduling */ live_vars = aco::live_var_analysis(program.get()); aco::spill(program.get(), live_vars); } std::string llvm_ir; if (args->options->record_ir) { char* data = NULL; size_t size = 0; u_memstream mem; if (u_memstream_open(&mem, &data, &size)) { FILE* const memf = u_memstream_get(&mem); aco_print_program(program.get(), memf); fputc(0, memf); u_memstream_close(&mem); } llvm_ir = std::string(data, data + size); free(data); } if (program->collect_statistics) aco::collect_presched_stats(program.get()); if ((aco::debug_flags & aco::DEBUG_LIVE_INFO) && args->options->dump_shader) aco_print_program(program.get(), stderr, live_vars, aco::print_live_vars | aco::print_kill); if (!args->is_trap_handler_shader) { if (!args->options->key.optimisations_disabled && !(aco::debug_flags & aco::DEBUG_NO_SCHED)) aco::schedule_program(program.get(), live_vars); validate(program.get()); /* Register Allocation */ aco::register_allocation(program.get(), live_vars.live_out); if (aco::validate_ra(program.get())) { aco_print_program(program.get(), stderr); abort(); } else if (args->options->dump_shader) { aco_print_program(program.get(), stderr); } validate(program.get()); /* Optimization */ if (!args->options->key.optimisations_disabled && !(aco::debug_flags & aco::DEBUG_NO_OPT)) { aco::optimize_postRA(program.get()); validate(program.get()); } aco::ssa_elimination(program.get()); } /* Lower to HW Instructions */ aco::lower_to_hw_instr(program.get()); /* Insert Waitcnt */ aco::insert_wait_states(program.get()); aco::insert_NOPs(program.get()); if (program->chip_class >= GFX10) aco::form_hard_clauses(program.get()); if (program->collect_statistics || (aco::debug_flags & aco::DEBUG_PERF_INFO)) aco::collect_preasm_stats(program.get()); /* Assembly */ std::vector code; unsigned exec_size = aco::emit_program(program.get(), code); if (program->collect_statistics) aco::collect_postasm_stats(program.get(), code); bool get_disasm = args->options->dump_shader || args->options->record_ir; size_t size = llvm_ir.size(); std::string disasm; if (get_disasm) { if (check_print_asm_support(program.get())) { char* data = NULL; size_t disasm_size = 0; struct u_memstream mem; if (u_memstream_open(&mem, &data, &disasm_size)) { FILE* const memf = u_memstream_get(&mem); aco::print_asm(program.get(), code, exec_size / 4u, memf); fputc(0, memf); u_memstream_close(&mem); } disasm = std::string(data, data + disasm_size); size += disasm_size; free(data); } else { disasm = "Shader disassembly is not supported in the current configuration" #ifndef LLVM_AVAILABLE " (LLVM not available)" #endif ".\n"; size += disasm.length(); } } size_t stats_size = 0; if (program->collect_statistics) stats_size = aco::num_statistics * sizeof(uint32_t); size += stats_size; size += code.size() * sizeof(uint32_t) + sizeof(radv_shader_binary_legacy); /* We need to calloc to prevent unintialized data because this will be used * directly for the disk cache. Uninitialized data can appear because of * padding in the struct or because legacy_binary->data can be at an offset * from the start less than sizeof(radv_shader_binary_legacy). */ radv_shader_binary_legacy* legacy_binary = (radv_shader_binary_legacy*)calloc(size, 1); legacy_binary->base.type = RADV_BINARY_TYPE_LEGACY; legacy_binary->base.stage = shaders[shader_count - 1]->info.stage; legacy_binary->base.is_gs_copy_shader = args->is_gs_copy_shader; legacy_binary->base.total_size = size; if (program->collect_statistics) memcpy(legacy_binary->data, program->statistics, aco::num_statistics * sizeof(uint32_t)); legacy_binary->stats_size = stats_size; memcpy(legacy_binary->data + legacy_binary->stats_size, code.data(), code.size() * sizeof(uint32_t)); legacy_binary->exec_size = exec_size; legacy_binary->code_size = code.size() * sizeof(uint32_t); legacy_binary->base.config = config; legacy_binary->disasm_size = 0; legacy_binary->ir_size = llvm_ir.size(); llvm_ir.copy((char*)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size, llvm_ir.size()); if (get_disasm) { disasm.copy((char*)legacy_binary->data + legacy_binary->stats_size + legacy_binary->code_size + llvm_ir.size(), disasm.size()); legacy_binary->disasm_size = disasm.size(); } *binary = (radv_shader_binary*)legacy_binary; } void aco_compile_vs_prolog(const struct radv_vs_prolog_key* key, struct radv_prolog_binary** binary, const struct radv_shader_args* args) { aco::init(); /* create program */ ac_shader_config config = {0}; std::unique_ptr program{new aco::Program}; program->collect_statistics = false; program->debug.func = NULL; program->debug.private_data = NULL; /* create IR */ unsigned num_preserved_sgprs; aco::select_vs_prolog(program.get(), key, &config, args, &num_preserved_sgprs); aco::insert_NOPs(program.get()); if (args->options->dump_shader) aco_print_program(program.get(), stderr); /* assembly */ std::vector code; code.reserve(align(program->blocks[0].instructions.size() * 2, 16)); unsigned exec_size = aco::emit_program(program.get(), code); if (args->options->dump_shader) { aco::print_asm(program.get(), code, exec_size / 4u, stderr); fprintf(stderr, "\n"); } /* copy into binary */ size_t size = code.size() * sizeof(uint32_t) + sizeof(radv_prolog_binary); radv_prolog_binary* prolog_binary = (radv_prolog_binary*)calloc(size, 1); prolog_binary->num_sgprs = config.num_sgprs; prolog_binary->num_vgprs = config.num_vgprs; prolog_binary->num_preserved_sgprs = num_preserved_sgprs; prolog_binary->code_size = code.size() * sizeof(uint32_t); memcpy(prolog_binary->data, code.data(), prolog_binary->code_size); *binary = prolog_binary; }