/* * Copyright © 2020 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" #include "aco_builder.h" #include "util/debug.h" #include "c11/threads.h" namespace aco { uint64_t debug_flags = 0; static const struct debug_control aco_debug_options[] = {{"validateir", DEBUG_VALIDATE_IR}, {"validatera", DEBUG_VALIDATE_RA}, {"perfwarn", DEBUG_PERFWARN}, {"force-waitcnt", DEBUG_FORCE_WAITCNT}, {"novn", DEBUG_NO_VN}, {"noopt", DEBUG_NO_OPT}, {"nosched", DEBUG_NO_SCHED}, {"perfinfo", DEBUG_PERF_INFO}, {"liveinfo", DEBUG_LIVE_INFO}, {NULL, 0}}; static once_flag init_once_flag = ONCE_FLAG_INIT; static void init_once() { debug_flags = parse_debug_string(getenv("ACO_DEBUG"), aco_debug_options); #ifndef NDEBUG /* enable some flags by default on debug builds */ debug_flags |= aco::DEBUG_VALIDATE_IR; #endif } void init() { call_once(&init_once_flag, init_once); } void init_program(Program* program, Stage stage, const struct radv_shader_info* info, enum chip_class chip_class, enum radeon_family family, bool wgp_mode, ac_shader_config* config) { program->stage = stage; program->config = config; program->info = info; program->chip_class = chip_class; if (family == CHIP_UNKNOWN) { switch (chip_class) { case GFX6: program->family = CHIP_TAHITI; break; case GFX7: program->family = CHIP_BONAIRE; break; case GFX8: program->family = CHIP_POLARIS10; break; case GFX9: program->family = CHIP_VEGA10; break; case GFX10: program->family = CHIP_NAVI10; break; default: program->family = CHIP_UNKNOWN; break; } } else { program->family = family; } program->wave_size = info->wave_size; program->lane_mask = program->wave_size == 32 ? s1 : s2; program->dev.lds_encoding_granule = chip_class >= GFX7 ? 512 : 256; program->dev.lds_alloc_granule = chip_class >= GFX10_3 ? 1024 : program->dev.lds_encoding_granule; program->dev.lds_limit = chip_class >= GFX7 ? 65536 : 32768; /* apparently gfx702 also has 16-bank LDS but I can't find a family for that */ program->dev.has_16bank_lds = family == CHIP_KABINI || family == CHIP_STONEY; program->dev.vgpr_limit = 256; program->dev.physical_vgprs = 256; program->dev.vgpr_alloc_granule = 4; if (chip_class >= GFX10) { program->dev.physical_sgprs = 5120; /* doesn't matter as long as it's at least 128 * 40 */ program->dev.physical_vgprs = program->wave_size == 32 ? 1024 : 512; program->dev.sgpr_alloc_granule = 128; program->dev.sgpr_limit = 108; /* includes VCC, which can be treated as s[106-107] on GFX10+ */ if (chip_class >= GFX10_3) program->dev.vgpr_alloc_granule = program->wave_size == 32 ? 16 : 8; else program->dev.vgpr_alloc_granule = program->wave_size == 32 ? 8 : 4; } else if (program->chip_class >= GFX8) { program->dev.physical_sgprs = 800; program->dev.sgpr_alloc_granule = 16; program->dev.sgpr_limit = 102; if (family == CHIP_TONGA || family == CHIP_ICELAND) program->dev.sgpr_alloc_granule = 96; /* workaround hardware bug */ } else { program->dev.physical_sgprs = 512; program->dev.sgpr_alloc_granule = 8; program->dev.sgpr_limit = 104; } program->dev.max_wave64_per_simd = 10; if (program->chip_class >= GFX10_3) program->dev.max_wave64_per_simd = 16; else if (program->chip_class == GFX10) program->dev.max_wave64_per_simd = 20; else if (program->family >= CHIP_POLARIS10 && program->family <= CHIP_VEGAM) program->dev.max_wave64_per_simd = 8; program->dev.simd_per_cu = program->chip_class >= GFX10 ? 2 : 4; switch (program->family) { /* GFX8 APUs */ case CHIP_CARRIZO: case CHIP_STONEY: /* GFX9 APUS */ case CHIP_RAVEN: case CHIP_RAVEN2: case CHIP_RENOIR: program->dev.xnack_enabled = true; break; default: break; } program->dev.sram_ecc_enabled = program->family == CHIP_ARCTURUS; /* apparently gfx702 also has fast v_fma_f32 but I can't find a family for that */ program->dev.has_fast_fma32 = program->chip_class >= GFX9; if (program->family == CHIP_TAHITI || program->family == CHIP_CARRIZO || program->family == CHIP_HAWAII) program->dev.has_fast_fma32 = true; program->wgp_mode = wgp_mode; program->progress = CompilationProgress::after_isel; program->next_fp_mode.preserve_signed_zero_inf_nan32 = false; program->next_fp_mode.preserve_signed_zero_inf_nan16_64 = false; program->next_fp_mode.must_flush_denorms32 = false; program->next_fp_mode.must_flush_denorms16_64 = false; program->next_fp_mode.care_about_round32 = false; program->next_fp_mode.care_about_round16_64 = false; program->next_fp_mode.denorm16_64 = fp_denorm_keep; program->next_fp_mode.denorm32 = 0; program->next_fp_mode.round16_64 = fp_round_ne; program->next_fp_mode.round32 = fp_round_ne; } memory_sync_info get_sync_info(const Instruction* instr) { switch (instr->format) { case Format::SMEM: return instr->smem().sync; case Format::MUBUF: return instr->mubuf().sync; case Format::MIMG: return instr->mimg().sync; case Format::MTBUF: return instr->mtbuf().sync; case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: return instr->flatlike().sync; case Format::DS: return instr->ds().sync; default: return memory_sync_info(); } } bool can_use_SDWA(chip_class chip, const aco_ptr& instr, bool pre_ra) { if (!instr->isVALU()) return false; if (chip < GFX8 || instr->isDPP() || instr->isVOP3P()) return false; if (instr->isSDWA()) return true; if (instr->isVOP3()) { VOP3_instruction& vop3 = instr->vop3(); if (instr->format == Format::VOP3) return false; if (vop3.clamp && instr->isVOPC() && chip != GFX8) return false; if (vop3.omod && chip < GFX9) return false; // TODO: return true if we know we will use vcc if (!pre_ra && instr->definitions.size() >= 2) return false; for (unsigned i = 1; i < instr->operands.size(); i++) { if (instr->operands[i].isLiteral()) return false; if (chip < GFX9 && !instr->operands[i].isOfType(RegType::vgpr)) return false; } } if (!instr->definitions.empty() && instr->definitions[0].bytes() > 4 && !instr->isVOPC()) return false; if (!instr->operands.empty()) { if (instr->operands[0].isLiteral()) return false; if (chip < GFX9 && !instr->operands[0].isOfType(RegType::vgpr)) return false; if (instr->operands[0].bytes() > 4) return false; if (instr->operands.size() > 1 && instr->operands[1].bytes() > 4) return false; } bool is_mac = instr->opcode == aco_opcode::v_mac_f32 || instr->opcode == aco_opcode::v_mac_f16 || instr->opcode == aco_opcode::v_fmac_f32 || instr->opcode == aco_opcode::v_fmac_f16; if (chip != GFX8 && is_mac) return false; // TODO: return true if we know we will use vcc if (!pre_ra && instr->isVOPC() && chip == GFX8) return false; if (!pre_ra && instr->operands.size() >= 3 && !is_mac) return false; return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_clrexcp && instr->opcode != aco_opcode::v_swap_b32; } /* updates "instr" and returns the old instruction (or NULL if no update was needed) */ aco_ptr convert_to_SDWA(chip_class chip, aco_ptr& instr) { if (instr->isSDWA()) return NULL; aco_ptr tmp = std::move(instr); Format format = (Format)(((uint16_t)tmp->format & ~(uint16_t)Format::VOP3) | (uint16_t)Format::SDWA); instr.reset(create_instruction(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size())); std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin()); std::copy(tmp->definitions.cbegin(), tmp->definitions.cend(), instr->definitions.begin()); SDWA_instruction& sdwa = instr->sdwa(); if (tmp->isVOP3()) { VOP3_instruction& vop3 = tmp->vop3(); memcpy(sdwa.neg, vop3.neg, sizeof(sdwa.neg)); memcpy(sdwa.abs, vop3.abs, sizeof(sdwa.abs)); sdwa.omod = vop3.omod; sdwa.clamp = vop3.clamp; } for (unsigned i = 0; i < instr->operands.size(); i++) { /* SDWA only uses operands 0 and 1. */ if (i >= 2) break; sdwa.sel[i] = SubdwordSel(instr->operands[i].bytes(), 0, false); } sdwa.dst_sel = SubdwordSel(instr->definitions[0].bytes(), 0, false); if (instr->definitions[0].getTemp().type() == RegType::sgpr && chip == GFX8) instr->definitions[0].setFixed(vcc); if (instr->definitions.size() >= 2) instr->definitions[1].setFixed(vcc); if (instr->operands.size() >= 3) instr->operands[2].setFixed(vcc); return tmp; } bool can_use_DPP(const aco_ptr& instr, bool pre_ra) { assert(instr->isVALU() && !instr->operands.empty()); if (instr->isDPP()) return true; if (instr->operands.size() && instr->operands[0].isLiteral()) return false; if (instr->isSDWA()) return false; if (!pre_ra && (instr->isVOPC() || instr->definitions.size() > 1) && instr->definitions.back().physReg() != vcc) return false; if (!pre_ra && instr->operands.size() >= 3 && instr->operands[2].physReg() != vcc) return false; if (instr->isVOP3()) { const VOP3_instruction* vop3 = &instr->vop3(); if (vop3->clamp || vop3->omod || vop3->opsel) return false; if (instr->format == Format::VOP3) return false; if (instr->operands.size() > 1 && !instr->operands[1].isOfType(RegType::vgpr)) return false; } /* there are more cases but those all take 64-bit inputs */ return instr->opcode != aco_opcode::v_madmk_f32 && instr->opcode != aco_opcode::v_madak_f32 && instr->opcode != aco_opcode::v_madmk_f16 && instr->opcode != aco_opcode::v_madak_f16 && instr->opcode != aco_opcode::v_readfirstlane_b32 && instr->opcode != aco_opcode::v_cvt_f64_i32 && instr->opcode != aco_opcode::v_cvt_f64_f32 && instr->opcode != aco_opcode::v_cvt_f64_u32; } aco_ptr convert_to_DPP(aco_ptr& instr) { if (instr->isDPP()) return NULL; aco_ptr tmp = std::move(instr); Format format = (Format)(((uint32_t)tmp->format & ~(uint32_t)Format::VOP3) | (uint32_t)Format::DPP); instr.reset(create_instruction(tmp->opcode, format, tmp->operands.size(), tmp->definitions.size())); std::copy(tmp->operands.cbegin(), tmp->operands.cend(), instr->operands.begin()); for (unsigned i = 0; i < instr->definitions.size(); i++) instr->definitions[i] = tmp->definitions[i]; DPP_instruction* dpp = &instr->dpp(); dpp->dpp_ctrl = dpp_quad_perm(0, 1, 2, 3); dpp->row_mask = 0xf; dpp->bank_mask = 0xf; if (tmp->isVOP3()) { const VOP3_instruction* vop3 = &tmp->vop3(); memcpy(dpp->neg, vop3->neg, sizeof(dpp->neg)); memcpy(dpp->abs, vop3->abs, sizeof(dpp->abs)); } if (instr->isVOPC() || instr->definitions.size() > 1) instr->definitions.back().setFixed(vcc); if (instr->operands.size() >= 3) instr->operands[2].setFixed(vcc); return tmp; } bool can_use_opsel(chip_class chip, aco_opcode op, int idx, bool high) { /* opsel is only GFX9+ */ if ((high || idx == -1) && chip < GFX9) return false; switch (op) { case aco_opcode::v_div_fixup_f16: case aco_opcode::v_fma_f16: case aco_opcode::v_mad_f16: case aco_opcode::v_mad_u16: case aco_opcode::v_mad_i16: case aco_opcode::v_med3_f16: case aco_opcode::v_med3_i16: case aco_opcode::v_med3_u16: case aco_opcode::v_min3_f16: case aco_opcode::v_min3_i16: case aco_opcode::v_min3_u16: case aco_opcode::v_max3_f16: case aco_opcode::v_max3_i16: case aco_opcode::v_max3_u16: case aco_opcode::v_max_u16_e64: case aco_opcode::v_max_i16_e64: case aco_opcode::v_min_u16_e64: case aco_opcode::v_min_i16_e64: case aco_opcode::v_add_i16: case aco_opcode::v_sub_i16: case aco_opcode::v_add_u16_e64: case aco_opcode::v_sub_u16_e64: case aco_opcode::v_lshlrev_b16_e64: case aco_opcode::v_lshrrev_b16_e64: case aco_opcode::v_ashrrev_i16_e64: case aco_opcode::v_mul_lo_u16_e64: return true; case aco_opcode::v_pack_b32_f16: case aco_opcode::v_cvt_pknorm_i16_f16: case aco_opcode::v_cvt_pknorm_u16_f16: return idx != -1; case aco_opcode::v_mad_u32_u16: case aco_opcode::v_mad_i32_i16: return idx >= 0 && idx < 2; default: return false; } } bool instr_is_16bit(chip_class chip, aco_opcode op) { /* partial register writes are GFX9+, only */ if (chip < GFX9) return false; switch (op) { /* VOP3 */ case aco_opcode::v_mad_f16: case aco_opcode::v_mad_u16: case aco_opcode::v_mad_i16: case aco_opcode::v_fma_f16: case aco_opcode::v_div_fixup_f16: case aco_opcode::v_interp_p2_f16: case aco_opcode::v_fma_mixlo_f16: /* VOP2 */ case aco_opcode::v_mac_f16: case aco_opcode::v_madak_f16: case aco_opcode::v_madmk_f16: return chip >= GFX9; case aco_opcode::v_add_f16: case aco_opcode::v_sub_f16: case aco_opcode::v_subrev_f16: case aco_opcode::v_mul_f16: case aco_opcode::v_max_f16: case aco_opcode::v_min_f16: case aco_opcode::v_ldexp_f16: case aco_opcode::v_fmac_f16: case aco_opcode::v_fmamk_f16: case aco_opcode::v_fmaak_f16: /* VOP1 */ case aco_opcode::v_cvt_f16_f32: case aco_opcode::v_cvt_f16_u16: case aco_opcode::v_cvt_f16_i16: case aco_opcode::v_rcp_f16: case aco_opcode::v_sqrt_f16: case aco_opcode::v_rsq_f16: case aco_opcode::v_log_f16: case aco_opcode::v_exp_f16: case aco_opcode::v_frexp_mant_f16: case aco_opcode::v_frexp_exp_i16_f16: case aco_opcode::v_floor_f16: case aco_opcode::v_ceil_f16: case aco_opcode::v_trunc_f16: case aco_opcode::v_rndne_f16: case aco_opcode::v_fract_f16: case aco_opcode::v_sin_f16: case aco_opcode::v_cos_f16: return chip >= GFX10; // TODO: confirm whether these write 16 or 32 bit on GFX10+ // case aco_opcode::v_cvt_u16_f16: // case aco_opcode::v_cvt_i16_f16: // case aco_opcode::p_cvt_f16_f32_rtne: // case aco_opcode::v_cvt_norm_i16_f16: // case aco_opcode::v_cvt_norm_u16_f16: /* on GFX10, all opsel instructions preserve the high bits */ default: return chip >= GFX10 && can_use_opsel(chip, op, -1, false); } } uint32_t get_reduction_identity(ReduceOp op, unsigned idx) { switch (op) { case iadd8: case iadd16: case iadd32: case iadd64: case fadd16: case fadd32: case fadd64: case ior8: case ior16: case ior32: case ior64: case ixor8: case ixor16: case ixor32: case ixor64: case umax8: case umax16: case umax32: case umax64: return 0; case imul8: case imul16: case imul32: case imul64: return idx ? 0 : 1; case fmul16: return 0x3c00u; /* 1.0 */ case fmul32: return 0x3f800000u; /* 1.0 */ case fmul64: return idx ? 0x3ff00000u : 0u; /* 1.0 */ case imin8: return INT8_MAX; case imin16: return INT16_MAX; case imin32: return INT32_MAX; case imin64: return idx ? 0x7fffffffu : 0xffffffffu; case imax8: return INT8_MIN; case imax16: return INT16_MIN; case imax32: return INT32_MIN; case imax64: return idx ? 0x80000000u : 0; case umin8: case umin16: case iand8: case iand16: return 0xffffffffu; case umin32: case umin64: case iand32: case iand64: return 0xffffffffu; case fmin16: return 0x7c00u; /* infinity */ case fmin32: return 0x7f800000u; /* infinity */ case fmin64: return idx ? 0x7ff00000u : 0u; /* infinity */ case fmax16: return 0xfc00u; /* negative infinity */ case fmax32: return 0xff800000u; /* negative infinity */ case fmax64: return idx ? 0xfff00000u : 0u; /* negative infinity */ default: unreachable("Invalid reduction operation"); break; } return 0; } bool needs_exec_mask(const Instruction* instr) { if (instr->isVALU()) { return instr->opcode != aco_opcode::v_readlane_b32 && instr->opcode != aco_opcode::v_readlane_b32_e64 && instr->opcode != aco_opcode::v_writelane_b32 && instr->opcode != aco_opcode::v_writelane_b32_e64; } if (instr->isVMEM() || instr->isFlatLike()) return true; if (instr->isSALU() || instr->isBranch() || instr->isSMEM() || instr->isBarrier()) return instr->reads_exec(); if (instr->isPseudo()) { switch (instr->opcode) { case aco_opcode::p_create_vector: case aco_opcode::p_extract_vector: case aco_opcode::p_split_vector: case aco_opcode::p_phi: case aco_opcode::p_parallelcopy: for (Definition def : instr->definitions) { if (def.getTemp().type() == RegType::vgpr) return true; } return instr->reads_exec(); case aco_opcode::p_spill: case aco_opcode::p_reload: case aco_opcode::p_logical_start: case aco_opcode::p_logical_end: case aco_opcode::p_startpgm: return instr->reads_exec(); default: break; } } return true; } struct CmpInfo { aco_opcode ordered; aco_opcode unordered; aco_opcode ordered_swapped; aco_opcode unordered_swapped; aco_opcode inverse; aco_opcode f32; unsigned size; }; ALWAYS_INLINE bool get_cmp_info(aco_opcode op, CmpInfo* info) { info->ordered = aco_opcode::num_opcodes; info->unordered = aco_opcode::num_opcodes; info->ordered_swapped = aco_opcode::num_opcodes; info->unordered_swapped = aco_opcode::num_opcodes; switch (op) { // clang-format off #define CMP2(ord, unord, ord_swap, unord_swap, sz) \ case aco_opcode::v_cmp_##ord##_f##sz: \ case aco_opcode::v_cmp_n##unord##_f##sz: \ info->ordered = aco_opcode::v_cmp_##ord##_f##sz; \ info->unordered = aco_opcode::v_cmp_n##unord##_f##sz; \ info->ordered_swapped = aco_opcode::v_cmp_##ord_swap##_f##sz; \ info->unordered_swapped = aco_opcode::v_cmp_n##unord_swap##_f##sz; \ info->inverse = op == aco_opcode::v_cmp_n##unord##_f##sz ? aco_opcode::v_cmp_##unord##_f##sz \ : aco_opcode::v_cmp_n##ord##_f##sz; \ info->f32 = op == aco_opcode::v_cmp_##ord##_f##sz ? aco_opcode::v_cmp_##ord##_f32 \ : aco_opcode::v_cmp_n##unord##_f32; \ info->size = sz; \ return true; #define CMP(ord, unord, ord_swap, unord_swap) \ CMP2(ord, unord, ord_swap, unord_swap, 16) \ CMP2(ord, unord, ord_swap, unord_swap, 32) \ CMP2(ord, unord, ord_swap, unord_swap, 64) CMP(lt, /*n*/ge, gt, /*n*/le) CMP(eq, /*n*/lg, eq, /*n*/lg) CMP(le, /*n*/gt, ge, /*n*/lt) CMP(gt, /*n*/le, lt, /*n*/le) CMP(lg, /*n*/eq, lg, /*n*/eq) CMP(ge, /*n*/lt, le, /*n*/gt) #undef CMP #undef CMP2 #define ORD_TEST(sz) \ case aco_opcode::v_cmp_u_f##sz: \ info->f32 = aco_opcode::v_cmp_u_f32; \ info->inverse = aco_opcode::v_cmp_o_f##sz; \ info->size = sz; \ return true; \ case aco_opcode::v_cmp_o_f##sz: \ info->f32 = aco_opcode::v_cmp_o_f32; \ info->inverse = aco_opcode::v_cmp_u_f##sz; \ info->size = sz; \ return true; ORD_TEST(16) ORD_TEST(32) ORD_TEST(64) #undef ORD_TEST // clang-format on default: return false; } } aco_opcode get_ordered(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.ordered : aco_opcode::num_opcodes; } aco_opcode get_unordered(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.unordered : aco_opcode::num_opcodes; } aco_opcode get_inverse(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.inverse : aco_opcode::num_opcodes; } aco_opcode get_f32_cmp(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.f32 : aco_opcode::num_opcodes; } unsigned get_cmp_bitsize(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) ? info.size : 0; } bool is_cmp(aco_opcode op) { CmpInfo info; return get_cmp_info(op, &info) && info.ordered != aco_opcode::num_opcodes; } bool can_swap_operands(aco_ptr& instr, aco_opcode* new_op) { if (instr->isDPP()) return false; if (instr->operands[0].isConstant() || (instr->operands[0].isTemp() && instr->operands[0].getTemp().type() == RegType::sgpr)) return false; switch (instr->opcode) { case aco_opcode::v_add_u32: case aco_opcode::v_add_co_u32: case aco_opcode::v_add_co_u32_e64: case aco_opcode::v_add_i32: case aco_opcode::v_add_f16: case aco_opcode::v_add_f32: case aco_opcode::v_mul_f16: case aco_opcode::v_mul_f32: case aco_opcode::v_or_b32: case aco_opcode::v_and_b32: case aco_opcode::v_xor_b32: case aco_opcode::v_max_f16: case aco_opcode::v_max_f32: case aco_opcode::v_min_f16: case aco_opcode::v_min_f32: case aco_opcode::v_max_i32: case aco_opcode::v_min_i32: case aco_opcode::v_max_u32: case aco_opcode::v_min_u32: case aco_opcode::v_max_i16: case aco_opcode::v_min_i16: case aco_opcode::v_max_u16: case aco_opcode::v_min_u16: case aco_opcode::v_max_i16_e64: case aco_opcode::v_min_i16_e64: case aco_opcode::v_max_u16_e64: case aco_opcode::v_min_u16_e64: *new_op = instr->opcode; return true; case aco_opcode::v_sub_f16: *new_op = aco_opcode::v_subrev_f16; return true; case aco_opcode::v_sub_f32: *new_op = aco_opcode::v_subrev_f32; return true; case aco_opcode::v_sub_co_u32: *new_op = aco_opcode::v_subrev_co_u32; return true; case aco_opcode::v_sub_u16: *new_op = aco_opcode::v_subrev_u16; return true; case aco_opcode::v_sub_u32: *new_op = aco_opcode::v_subrev_u32; return true; default: { CmpInfo info; get_cmp_info(instr->opcode, &info); if (info.ordered == instr->opcode) { *new_op = info.ordered_swapped; return true; } if (info.unordered == instr->opcode) { *new_op = info.unordered_swapped; return true; } return false; } } } wait_imm::wait_imm() : vm(unset_counter), exp(unset_counter), lgkm(unset_counter), vs(unset_counter) {} wait_imm::wait_imm(uint16_t vm_, uint16_t exp_, uint16_t lgkm_, uint16_t vs_) : vm(vm_), exp(exp_), lgkm(lgkm_), vs(vs_) {} wait_imm::wait_imm(enum chip_class chip, uint16_t packed) : vs(unset_counter) { vm = packed & 0xf; if (chip >= GFX9) vm |= (packed >> 10) & 0x30; exp = (packed >> 4) & 0x7; lgkm = (packed >> 8) & 0xf; if (chip >= GFX10) lgkm |= (packed >> 8) & 0x30; } uint16_t wait_imm::pack(enum chip_class chip) const { uint16_t imm = 0; assert(exp == unset_counter || exp <= 0x7); switch (chip) { case GFX10: case GFX10_3: assert(lgkm == unset_counter || lgkm <= 0x3f); assert(vm == unset_counter || vm <= 0x3f); imm = ((vm & 0x30) << 10) | ((lgkm & 0x3f) << 8) | ((exp & 0x7) << 4) | (vm & 0xf); break; case GFX9: assert(lgkm == unset_counter || lgkm <= 0xf); assert(vm == unset_counter || vm <= 0x3f); imm = ((vm & 0x30) << 10) | ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf); break; default: assert(lgkm == unset_counter || lgkm <= 0xf); assert(vm == unset_counter || vm <= 0xf); imm = ((lgkm & 0xf) << 8) | ((exp & 0x7) << 4) | (vm & 0xf); break; } if (chip < GFX9 && vm == wait_imm::unset_counter) imm |= 0xc000; /* should have no effect on pre-GFX9 and now we won't have to worry about the architecture when interpreting the immediate */ if (chip < GFX10 && lgkm == wait_imm::unset_counter) imm |= 0x3000; /* should have no effect on pre-GFX10 and now we won't have to worry about the architecture when interpreting the immediate */ return imm; } bool wait_imm::combine(const wait_imm& other) { bool changed = other.vm < vm || other.exp < exp || other.lgkm < lgkm || other.vs < vs; vm = std::min(vm, other.vm); exp = std::min(exp, other.exp); lgkm = std::min(lgkm, other.lgkm); vs = std::min(vs, other.vs); return changed; } bool wait_imm::empty() const { return vm == unset_counter && exp == unset_counter && lgkm == unset_counter && vs == unset_counter; } bool should_form_clause(const Instruction* a, const Instruction* b) { /* Vertex attribute loads from the same binding likely load from similar addresses */ unsigned a_vtx_binding = a->isMUBUF() ? a->mubuf().vtx_binding : (a->isMTBUF() ? a->mtbuf().vtx_binding : 0); unsigned b_vtx_binding = b->isMUBUF() ? b->mubuf().vtx_binding : (b->isMTBUF() ? b->mtbuf().vtx_binding : 0); if (a_vtx_binding && a_vtx_binding == b_vtx_binding) return true; if (a->format != b->format) return false; /* Assume loads which don't use descriptors might load from similar addresses. */ if (a->isFlatLike()) return true; if (a->isSMEM() && a->operands[0].bytes() == 8 && b->operands[0].bytes() == 8) return true; /* If they load from the same descriptor, assume they might load from similar * addresses. */ if (a->isVMEM() || a->isSMEM()) return a->operands[0].tempId() == b->operands[0].tempId(); return false; } } // namespace aco