/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_builder.h" #include "aco_ir.h" #include "common/ac_shader_util.h" #include "common/sid.h" #include namespace aco { const std::array reduce_ops = []() { std::array ret{}; ret[iadd8] = "iadd8"; ret[iadd16] = "iadd16"; ret[iadd32] = "iadd32"; ret[iadd64] = "iadd64"; ret[imul8] = "imul8"; ret[imul16] = "imul16"; ret[imul32] = "imul32"; ret[imul64] = "imul64"; ret[fadd16] = "fadd16"; ret[fadd32] = "fadd32"; ret[fadd64] = "fadd64"; ret[fmul16] = "fmul16"; ret[fmul32] = "fmul32"; ret[fmul64] = "fmul64"; ret[imin8] = "imin8"; ret[imin16] = "imin16"; ret[imin32] = "imin32"; ret[imin64] = "imin64"; ret[imax8] = "imax8"; ret[imax16] = "imax16"; ret[imax32] = "imax32"; ret[imax64] = "imax64"; ret[umin8] = "umin8"; ret[umin16] = "umin16"; ret[umin32] = "umin32"; ret[umin64] = "umin64"; ret[umax8] = "umax8"; ret[umax16] = "umax16"; ret[umax32] = "umax32"; ret[umax64] = "umax64"; ret[fmin16] = "fmin16"; ret[fmin32] = "fmin32"; ret[fmin64] = "fmin64"; ret[fmax16] = "fmax16"; ret[fmax32] = "fmax32"; ret[fmax64] = "fmax64"; ret[iand8] = "iand8"; ret[iand16] = "iand16"; ret[iand32] = "iand32"; ret[iand64] = "iand64"; ret[ior8] = "ior8"; ret[ior16] = "ior16"; ret[ior32] = "ior32"; ret[ior64] = "ior64"; ret[ixor8] = "ixor8"; ret[ixor16] = "ixor16"; ret[ixor32] = "ixor32"; ret[ixor64] = "ixor64"; return ret; }(); static void print_reg_class(const RegClass rc, FILE* output) { if (rc.is_subdword()) { fprintf(output, " v%ub: ", rc.bytes()); } else if (rc.type() == RegType::sgpr) { fprintf(output, " s%u: ", rc.size()); } else if (rc.is_linear()) { fprintf(output, " lv%u: ", rc.size()); } else { fprintf(output, " v%u: ", rc.size()); } } void print_physReg(PhysReg reg, unsigned bytes, FILE* output, unsigned flags) { if (reg == 124) { fprintf(output, "m0"); } else if (reg == 106) { fprintf(output, "vcc"); } else if (reg == 253) { fprintf(output, "scc"); } else if (reg == 126) { fprintf(output, "exec"); } else { bool is_vgpr = reg / 256; unsigned r = reg % 256; unsigned size = DIV_ROUND_UP(bytes, 4); if (size == 1 && (flags & print_no_ssa)) { fprintf(output, "%c%d", is_vgpr ? 'v' : 's', r); } else { fprintf(output, "%c[%d", is_vgpr ? 'v' : 's', r); if (size > 1) fprintf(output, "-%d]", r + size - 1); else fprintf(output, "]"); } if (reg.byte() || bytes % 4) fprintf(output, "[%d:%d]", reg.byte() * 8, (reg.byte() + bytes) * 8); } } static void print_constant(uint8_t reg, FILE* output) { if (reg >= 128 && reg <= 192) { fprintf(output, "%d", reg - 128); return; } else if (reg >= 192 && reg <= 208) { fprintf(output, "%d", 192 - reg); return; } switch (reg) { case 240: fprintf(output, "0.5"); break; case 241: fprintf(output, "-0.5"); break; case 242: fprintf(output, "1.0"); break; case 243: fprintf(output, "-1.0"); break; case 244: fprintf(output, "2.0"); break; case 245: fprintf(output, "-2.0"); break; case 246: fprintf(output, "4.0"); break; case 247: fprintf(output, "-4.0"); break; case 248: fprintf(output, "1/(2*PI)"); break; } } void aco_print_operand(const Operand* operand, FILE* output, unsigned flags) { if (operand->isLiteral() || (operand->isConstant() && operand->bytes() == 1)) { if (operand->bytes() == 1) fprintf(output, "0x%.2x", operand->constantValue()); else if (operand->bytes() == 2) fprintf(output, "0x%.4x", operand->constantValue()); else fprintf(output, "0x%x", operand->constantValue()); } else if (operand->isConstant()) { print_constant(operand->physReg().reg(), output); } else if (operand->isUndefined()) { print_reg_class(operand->regClass(), output); fprintf(output, "undef"); } else { if (operand->isLateKill()) fprintf(output, "(latekill)"); if (operand->is16bit()) fprintf(output, "(is16bit)"); if (operand->is24bit()) fprintf(output, "(is24bit)"); if ((flags & print_kill) && operand->isKill()) fprintf(output, "(kill)"); if (!(flags & print_no_ssa)) fprintf(output, "%%%d%s", operand->tempId(), operand->isFixed() ? ":" : ""); if (operand->isFixed()) print_physReg(operand->physReg(), operand->bytes(), output, flags); } } static void print_definition(const Definition* definition, FILE* output, unsigned flags) { if (!(flags & print_no_ssa)) print_reg_class(definition->regClass(), output); if (definition->isPrecise()) fprintf(output, "(precise)"); if (definition->isNUW()) fprintf(output, "(nuw)"); if (definition->isNoCSE()) fprintf(output, "(noCSE)"); if ((flags & print_kill) && definition->isKill()) fprintf(output, "(kill)"); if (!(flags & print_no_ssa)) fprintf(output, "%%%d%s", definition->tempId(), definition->isFixed() ? ":" : ""); if (definition->isFixed()) print_physReg(definition->physReg(), definition->bytes(), output, flags); } static void print_storage(storage_class storage, FILE* output) { fprintf(output, " storage:"); int printed = 0; if (storage & storage_buffer) printed += fprintf(output, "%sbuffer", printed ? "," : ""); if (storage & storage_atomic_counter) printed += fprintf(output, "%satomic_counter", printed ? "," : ""); if (storage & storage_image) printed += fprintf(output, "%simage", printed ? "," : ""); if (storage & storage_shared) printed += fprintf(output, "%sshared", printed ? "," : ""); if (storage & storage_vmem_output) printed += fprintf(output, "%svmem_output", printed ? "," : ""); if (storage & storage_scratch) printed += fprintf(output, "%sscratch", printed ? "," : ""); if (storage & storage_vgpr_spill) printed += fprintf(output, "%svgpr_spill", printed ? "," : ""); } static void print_semantics(memory_semantics sem, FILE* output) { fprintf(output, " semantics:"); int printed = 0; if (sem & semantic_acquire) printed += fprintf(output, "%sacquire", printed ? "," : ""); if (sem & semantic_release) printed += fprintf(output, "%srelease", printed ? "," : ""); if (sem & semantic_volatile) printed += fprintf(output, "%svolatile", printed ? "," : ""); if (sem & semantic_private) printed += fprintf(output, "%sprivate", printed ? "," : ""); if (sem & semantic_can_reorder) printed += fprintf(output, "%sreorder", printed ? "," : ""); if (sem & semantic_atomic) printed += fprintf(output, "%satomic", printed ? "," : ""); if (sem & semantic_rmw) printed += fprintf(output, "%srmw", printed ? "," : ""); } static void print_scope(sync_scope scope, FILE* output, const char* prefix = "scope") { fprintf(output, " %s:", prefix); switch (scope) { case scope_invocation: fprintf(output, "invocation"); break; case scope_subgroup: fprintf(output, "subgroup"); break; case scope_workgroup: fprintf(output, "workgroup"); break; case scope_queuefamily: fprintf(output, "queuefamily"); break; case scope_device: fprintf(output, "device"); break; } } static void print_sync(memory_sync_info sync, FILE* output) { print_storage(sync.storage, output); print_semantics(sync.semantics, output); print_scope(sync.scope, output); } static void print_instr_format_specific(const Instruction* instr, FILE* output) { switch (instr->format) { case Format::SOPK: { const SOPK_instruction& sopk = instr->sopk(); fprintf(output, " imm:%d", sopk.imm & 0x8000 ? (sopk.imm - 65536) : sopk.imm); break; } case Format::SOPP: { uint16_t imm = instr->sopp().imm; switch (instr->opcode) { case aco_opcode::s_waitcnt: { /* we usually should check the chip class for vmcnt/lgkm, but * insert_waitcnt() should fill it in regardless. */ unsigned vmcnt = (imm & 0xF) | ((imm & (0x3 << 14)) >> 10); if (vmcnt != 63) fprintf(output, " vmcnt(%d)", vmcnt); if (((imm >> 4) & 0x7) < 0x7) fprintf(output, " expcnt(%d)", (imm >> 4) & 0x7); if (((imm >> 8) & 0x3F) < 0x3F) fprintf(output, " lgkmcnt(%d)", (imm >> 8) & 0x3F); break; } case aco_opcode::s_endpgm: case aco_opcode::s_endpgm_saved: case aco_opcode::s_endpgm_ordered_ps_done: case aco_opcode::s_wakeup: case aco_opcode::s_barrier: case aco_opcode::s_icache_inv: case aco_opcode::s_ttracedata: case aco_opcode::s_set_gpr_idx_off: { break; } case aco_opcode::s_sendmsg: { unsigned id = imm & sendmsg_id_mask; switch (id) { case sendmsg_none: fprintf(output, " sendmsg(MSG_NONE)"); break; case _sendmsg_gs: fprintf(output, " sendmsg(gs%s%s, %u)", imm & 0x10 ? ", cut" : "", imm & 0x20 ? ", emit" : "", imm >> 8); break; case _sendmsg_gs_done: fprintf(output, " sendmsg(gs_done%s%s, %u)", imm & 0x10 ? ", cut" : "", imm & 0x20 ? ", emit" : "", imm >> 8); break; case sendmsg_save_wave: fprintf(output, " sendmsg(save_wave)"); break; case sendmsg_stall_wave_gen: fprintf(output, " sendmsg(stall_wave_gen)"); break; case sendmsg_halt_waves: fprintf(output, " sendmsg(halt_waves)"); break; case sendmsg_ordered_ps_done: fprintf(output, " sendmsg(ordered_ps_done)"); break; case sendmsg_early_prim_dealloc: fprintf(output, " sendmsg(early_prim_dealloc)"); break; case sendmsg_gs_alloc_req: fprintf(output, " sendmsg(gs_alloc_req)"); break; } break; } default: { if (imm) fprintf(output, " imm:%u", imm); break; } } if (instr->sopp().block != -1) fprintf(output, " block:BB%d", instr->sopp().block); break; } case Format::SMEM: { const SMEM_instruction& smem = instr->smem(); if (smem.glc) fprintf(output, " glc"); if (smem.dlc) fprintf(output, " dlc"); if (smem.nv) fprintf(output, " nv"); print_sync(smem.sync, output); break; } case Format::VINTRP: { const Interp_instruction& vintrp = instr->vintrp(); fprintf(output, " attr%d.%c", vintrp.attribute, "xyzw"[vintrp.component]); break; } case Format::DS: { const DS_instruction& ds = instr->ds(); if (ds.offset0) fprintf(output, " offset0:%u", ds.offset0); if (ds.offset1) fprintf(output, " offset1:%u", ds.offset1); if (ds.gds) fprintf(output, " gds"); print_sync(ds.sync, output); break; } case Format::MUBUF: { const MUBUF_instruction& mubuf = instr->mubuf(); if (mubuf.offset) fprintf(output, " offset:%u", mubuf.offset); if (mubuf.offen) fprintf(output, " offen"); if (mubuf.idxen) fprintf(output, " idxen"); if (mubuf.addr64) fprintf(output, " addr64"); if (mubuf.glc) fprintf(output, " glc"); if (mubuf.dlc) fprintf(output, " dlc"); if (mubuf.slc) fprintf(output, " slc"); if (mubuf.tfe) fprintf(output, " tfe"); if (mubuf.lds) fprintf(output, " lds"); if (mubuf.disable_wqm) fprintf(output, " disable_wqm"); print_sync(mubuf.sync, output); break; } case Format::MIMG: { const MIMG_instruction& mimg = instr->mimg(); unsigned identity_dmask = !instr->definitions.empty() ? (1 << instr->definitions[0].size()) - 1 : 0xf; if ((mimg.dmask & identity_dmask) != identity_dmask) fprintf(output, " dmask:%s%s%s%s", mimg.dmask & 0x1 ? "x" : "", mimg.dmask & 0x2 ? "y" : "", mimg.dmask & 0x4 ? "z" : "", mimg.dmask & 0x8 ? "w" : ""); switch (mimg.dim) { case ac_image_1d: fprintf(output, " 1d"); break; case ac_image_2d: fprintf(output, " 2d"); break; case ac_image_3d: fprintf(output, " 3d"); break; case ac_image_cube: fprintf(output, " cube"); break; case ac_image_1darray: fprintf(output, " 1darray"); break; case ac_image_2darray: fprintf(output, " 2darray"); break; case ac_image_2dmsaa: fprintf(output, " 2dmsaa"); break; case ac_image_2darraymsaa: fprintf(output, " 2darraymsaa"); break; } if (mimg.unrm) fprintf(output, " unrm"); if (mimg.glc) fprintf(output, " glc"); if (mimg.dlc) fprintf(output, " dlc"); if (mimg.slc) fprintf(output, " slc"); if (mimg.tfe) fprintf(output, " tfe"); if (mimg.da) fprintf(output, " da"); if (mimg.lwe) fprintf(output, " lwe"); if (mimg.r128 || mimg.a16) fprintf(output, " r128/a16"); if (mimg.d16) fprintf(output, " d16"); if (mimg.disable_wqm) fprintf(output, " disable_wqm"); print_sync(mimg.sync, output); break; } case Format::EXP: { const Export_instruction& exp = instr->exp(); unsigned identity_mask = exp.compressed ? 0x5 : 0xf; if ((exp.enabled_mask & identity_mask) != identity_mask) fprintf(output, " en:%c%c%c%c", exp.enabled_mask & 0x1 ? 'r' : '*', exp.enabled_mask & 0x2 ? 'g' : '*', exp.enabled_mask & 0x4 ? 'b' : '*', exp.enabled_mask & 0x8 ? 'a' : '*'); if (exp.compressed) fprintf(output, " compr"); if (exp.done) fprintf(output, " done"); if (exp.valid_mask) fprintf(output, " vm"); if (exp.dest <= V_008DFC_SQ_EXP_MRT + 7) fprintf(output, " mrt%d", exp.dest - V_008DFC_SQ_EXP_MRT); else if (exp.dest == V_008DFC_SQ_EXP_MRTZ) fprintf(output, " mrtz"); else if (exp.dest == V_008DFC_SQ_EXP_NULL) fprintf(output, " null"); else if (exp.dest >= V_008DFC_SQ_EXP_POS && exp.dest <= V_008DFC_SQ_EXP_POS + 3) fprintf(output, " pos%d", exp.dest - V_008DFC_SQ_EXP_POS); else if (exp.dest >= V_008DFC_SQ_EXP_PARAM && exp.dest <= V_008DFC_SQ_EXP_PARAM + 31) fprintf(output, " param%d", exp.dest - V_008DFC_SQ_EXP_PARAM); break; } case Format::PSEUDO_BRANCH: { const Pseudo_branch_instruction& branch = instr->branch(); /* Note: BB0 cannot be a branch target */ if (branch.target[0] != 0) fprintf(output, " BB%d", branch.target[0]); if (branch.target[1] != 0) fprintf(output, ", BB%d", branch.target[1]); break; } case Format::PSEUDO_REDUCTION: { const Pseudo_reduction_instruction& reduce = instr->reduction(); fprintf(output, " op:%s", reduce_ops[reduce.reduce_op]); if (reduce.cluster_size) fprintf(output, " cluster_size:%u", reduce.cluster_size); break; } case Format::PSEUDO_BARRIER: { const Pseudo_barrier_instruction& barrier = instr->barrier(); print_sync(barrier.sync, output); print_scope(barrier.exec_scope, output, "exec_scope"); break; } case Format::FLAT: case Format::GLOBAL: case Format::SCRATCH: { const FLAT_instruction& flat = instr->flatlike(); if (flat.offset) fprintf(output, " offset:%u", flat.offset); if (flat.glc) fprintf(output, " glc"); if (flat.dlc) fprintf(output, " dlc"); if (flat.slc) fprintf(output, " slc"); if (flat.lds) fprintf(output, " lds"); if (flat.nv) fprintf(output, " nv"); if (flat.disable_wqm) fprintf(output, " disable_wqm"); print_sync(flat.sync, output); break; } case Format::MTBUF: { const MTBUF_instruction& mtbuf = instr->mtbuf(); fprintf(output, " dfmt:"); switch (mtbuf.dfmt) { case V_008F0C_BUF_DATA_FORMAT_8: fprintf(output, "8"); break; case V_008F0C_BUF_DATA_FORMAT_16: fprintf(output, "16"); break; case V_008F0C_BUF_DATA_FORMAT_8_8: fprintf(output, "8_8"); break; case V_008F0C_BUF_DATA_FORMAT_32: fprintf(output, "32"); break; case V_008F0C_BUF_DATA_FORMAT_16_16: fprintf(output, "16_16"); break; case V_008F0C_BUF_DATA_FORMAT_10_11_11: fprintf(output, "10_11_11"); break; case V_008F0C_BUF_DATA_FORMAT_11_11_10: fprintf(output, "11_11_10"); break; case V_008F0C_BUF_DATA_FORMAT_10_10_10_2: fprintf(output, "10_10_10_2"); break; case V_008F0C_BUF_DATA_FORMAT_2_10_10_10: fprintf(output, "2_10_10_10"); break; case V_008F0C_BUF_DATA_FORMAT_8_8_8_8: fprintf(output, "8_8_8_8"); break; case V_008F0C_BUF_DATA_FORMAT_32_32: fprintf(output, "32_32"); break; case V_008F0C_BUF_DATA_FORMAT_16_16_16_16: fprintf(output, "16_16_16_16"); break; case V_008F0C_BUF_DATA_FORMAT_32_32_32: fprintf(output, "32_32_32"); break; case V_008F0C_BUF_DATA_FORMAT_32_32_32_32: fprintf(output, "32_32_32_32"); break; case V_008F0C_BUF_DATA_FORMAT_RESERVED_15: fprintf(output, "reserved15"); break; } fprintf(output, " nfmt:"); switch (mtbuf.nfmt) { case V_008F0C_BUF_NUM_FORMAT_UNORM: fprintf(output, "unorm"); break; case V_008F0C_BUF_NUM_FORMAT_SNORM: fprintf(output, "snorm"); break; case V_008F0C_BUF_NUM_FORMAT_USCALED: fprintf(output, "uscaled"); break; case V_008F0C_BUF_NUM_FORMAT_SSCALED: fprintf(output, "sscaled"); break; case V_008F0C_BUF_NUM_FORMAT_UINT: fprintf(output, "uint"); break; case V_008F0C_BUF_NUM_FORMAT_SINT: fprintf(output, "sint"); break; case V_008F0C_BUF_NUM_FORMAT_SNORM_OGL: fprintf(output, "snorm"); break; case V_008F0C_BUF_NUM_FORMAT_FLOAT: fprintf(output, "float"); break; } if (mtbuf.offset) fprintf(output, " offset:%u", mtbuf.offset); if (mtbuf.offen) fprintf(output, " offen"); if (mtbuf.idxen) fprintf(output, " idxen"); if (mtbuf.glc) fprintf(output, " glc"); if (mtbuf.dlc) fprintf(output, " dlc"); if (mtbuf.slc) fprintf(output, " slc"); if (mtbuf.tfe) fprintf(output, " tfe"); if (mtbuf.disable_wqm) fprintf(output, " disable_wqm"); print_sync(mtbuf.sync, output); break; } case Format::VOP3P: { if (instr->vop3p().clamp) fprintf(output, " clamp"); break; } default: { break; } } if (instr->isVOP3()) { const VOP3_instruction& vop3 = instr->vop3(); switch (vop3.omod) { case 1: fprintf(output, " *2"); break; case 2: fprintf(output, " *4"); break; case 3: fprintf(output, " *0.5"); break; } if (vop3.clamp) fprintf(output, " clamp"); if (vop3.opsel & (1 << 3)) fprintf(output, " opsel_hi"); } else if (instr->isDPP()) { const DPP_instruction& dpp = instr->dpp(); if (dpp.dpp_ctrl <= 0xff) { fprintf(output, " quad_perm:[%d,%d,%d,%d]", dpp.dpp_ctrl & 0x3, (dpp.dpp_ctrl >> 2) & 0x3, (dpp.dpp_ctrl >> 4) & 0x3, (dpp.dpp_ctrl >> 6) & 0x3); } else if (dpp.dpp_ctrl >= 0x101 && dpp.dpp_ctrl <= 0x10f) { fprintf(output, " row_shl:%d", dpp.dpp_ctrl & 0xf); } else if (dpp.dpp_ctrl >= 0x111 && dpp.dpp_ctrl <= 0x11f) { fprintf(output, " row_shr:%d", dpp.dpp_ctrl & 0xf); } else if (dpp.dpp_ctrl >= 0x121 && dpp.dpp_ctrl <= 0x12f) { fprintf(output, " row_ror:%d", dpp.dpp_ctrl & 0xf); } else if (dpp.dpp_ctrl == dpp_wf_sl1) { fprintf(output, " wave_shl:1"); } else if (dpp.dpp_ctrl == dpp_wf_rl1) { fprintf(output, " wave_rol:1"); } else if (dpp.dpp_ctrl == dpp_wf_sr1) { fprintf(output, " wave_shr:1"); } else if (dpp.dpp_ctrl == dpp_wf_rr1) { fprintf(output, " wave_ror:1"); } else if (dpp.dpp_ctrl == dpp_row_mirror) { fprintf(output, " row_mirror"); } else if (dpp.dpp_ctrl == dpp_row_half_mirror) { fprintf(output, " row_half_mirror"); } else if (dpp.dpp_ctrl == dpp_row_bcast15) { fprintf(output, " row_bcast:15"); } else if (dpp.dpp_ctrl == dpp_row_bcast31) { fprintf(output, " row_bcast:31"); } else { fprintf(output, " dpp_ctrl:0x%.3x", dpp.dpp_ctrl); } if (dpp.row_mask != 0xf) fprintf(output, " row_mask:0x%.1x", dpp.row_mask); if (dpp.bank_mask != 0xf) fprintf(output, " bank_mask:0x%.1x", dpp.bank_mask); if (dpp.bound_ctrl) fprintf(output, " bound_ctrl:1"); } else if (instr->isSDWA()) { const SDWA_instruction& sdwa = instr->sdwa(); switch (sdwa.omod) { case 1: fprintf(output, " *2"); break; case 2: fprintf(output, " *4"); break; case 3: fprintf(output, " *0.5"); break; } if (sdwa.clamp) fprintf(output, " clamp"); if (!instr->isVOPC()) { char sext = sdwa.dst_sel.sign_extend() ? 's' : 'u'; unsigned offset = sdwa.dst_sel.offset(); if (instr->definitions[0].isFixed()) offset += instr->definitions[0].physReg().byte(); switch (sdwa.dst_sel.size()) { case 1: fprintf(output, " dst_sel:%cbyte%u", sext, offset); break; case 2: fprintf(output, " dst_sel:%cword%u", sext, offset >> 1); break; case 4: fprintf(output, " dst_sel:dword"); break; default: break; } if (instr->definitions[0].bytes() < 4) fprintf(output, " dst_preserve"); } for (unsigned i = 0; i < std::min(2, instr->operands.size()); i++) { char sext = sdwa.sel[i].sign_extend() ? 's' : 'u'; unsigned offset = sdwa.sel[i].offset(); if (instr->operands[i].isFixed()) offset += instr->operands[i].physReg().byte(); switch (sdwa.sel[i].size()) { case 1: fprintf(output, " src%d_sel:%cbyte%u", i, sext, offset); break; case 2: fprintf(output, " src%d_sel:%cword%u", i, sext, offset >> 1); break; case 4: fprintf(output, " src%d_sel:dword", i); break; default: break; } } } } void aco_print_instr(const Instruction* instr, FILE* output, unsigned flags) { if (!instr->definitions.empty()) { for (unsigned i = 0; i < instr->definitions.size(); ++i) { print_definition(&instr->definitions[i], output, flags); if (i + 1 != instr->definitions.size()) fprintf(output, ", "); } fprintf(output, " = "); } fprintf(output, "%s", instr_info.name[(int)instr->opcode]); if (instr->operands.size()) { bool* const abs = (bool*)alloca(instr->operands.size() * sizeof(bool)); bool* const neg = (bool*)alloca(instr->operands.size() * sizeof(bool)); bool* const opsel = (bool*)alloca(instr->operands.size() * sizeof(bool)); for (unsigned i = 0; i < instr->operands.size(); ++i) { abs[i] = false; neg[i] = false; opsel[i] = false; } if (instr->isVOP3()) { const VOP3_instruction& vop3 = instr->vop3(); for (unsigned i = 0; i < 3; ++i) { abs[i] = vop3.abs[i]; neg[i] = vop3.neg[i]; opsel[i] = vop3.opsel & (1 << i); } } else if (instr->isDPP()) { const DPP_instruction& dpp = instr->dpp(); for (unsigned i = 0; i < 2; ++i) { abs[i] = dpp.abs[i]; neg[i] = dpp.neg[i]; opsel[i] = false; } } else if (instr->isSDWA()) { const SDWA_instruction& sdwa = instr->sdwa(); for (unsigned i = 0; i < 2; ++i) { abs[i] = sdwa.abs[i]; neg[i] = sdwa.neg[i]; opsel[i] = false; } } for (unsigned i = 0; i < instr->operands.size(); ++i) { if (i) fprintf(output, ", "); else fprintf(output, " "); if (neg[i]) fprintf(output, "-"); if (abs[i]) fprintf(output, "|"); if (opsel[i]) fprintf(output, "hi("); aco_print_operand(&instr->operands[i], output, flags); if (opsel[i]) fprintf(output, ")"); if (abs[i]) fprintf(output, "|"); if (instr->isVOP3P()) { const VOP3P_instruction& vop3 = instr->vop3p(); if ((vop3.opsel_lo & (1 << i)) || !(vop3.opsel_hi & (1 << i))) { fprintf(output, ".%c%c", vop3.opsel_lo & (1 << i) ? 'y' : 'x', vop3.opsel_hi & (1 << i) ? 'y' : 'x'); } if (vop3.neg_lo[i] && vop3.neg_hi[i]) fprintf(output, "*[-1,-1]"); else if (vop3.neg_lo[i]) fprintf(output, "*[-1,1]"); else if (vop3.neg_hi[i]) fprintf(output, "*[1,-1]"); } } } print_instr_format_specific(instr, output); } static void print_block_kind(uint16_t kind, FILE* output) { if (kind & block_kind_uniform) fprintf(output, "uniform, "); if (kind & block_kind_top_level) fprintf(output, "top-level, "); if (kind & block_kind_loop_preheader) fprintf(output, "loop-preheader, "); if (kind & block_kind_loop_header) fprintf(output, "loop-header, "); if (kind & block_kind_loop_exit) fprintf(output, "loop-exit, "); if (kind & block_kind_continue) fprintf(output, "continue, "); if (kind & block_kind_break) fprintf(output, "break, "); if (kind & block_kind_continue_or_break) fprintf(output, "continue_or_break, "); if (kind & block_kind_discard) fprintf(output, "discard, "); if (kind & block_kind_branch) fprintf(output, "branch, "); if (kind & block_kind_merge) fprintf(output, "merge, "); if (kind & block_kind_invert) fprintf(output, "invert, "); if (kind & block_kind_uses_discard_if) fprintf(output, "discard_if, "); if (kind & block_kind_needs_lowering) fprintf(output, "needs_lowering, "); if (kind & block_kind_uses_demote) fprintf(output, "uses_demote, "); if (kind & block_kind_export_end) fprintf(output, "export_end, "); } static void print_stage(Stage stage, FILE* output) { fprintf(output, "ACO shader stage: "); if (stage == compute_cs) fprintf(output, "compute_cs"); else if (stage == fragment_fs) fprintf(output, "fragment_fs"); else if (stage == gs_copy_vs) fprintf(output, "gs_copy_vs"); else if (stage == vertex_ls) fprintf(output, "vertex_ls"); else if (stage == vertex_es) fprintf(output, "vertex_es"); else if (stage == vertex_vs) fprintf(output, "vertex_vs"); else if (stage == tess_control_hs) fprintf(output, "tess_control_hs"); else if (stage == vertex_tess_control_hs) fprintf(output, "vertex_tess_control_hs"); else if (stage == tess_eval_es) fprintf(output, "tess_eval_es"); else if (stage == tess_eval_vs) fprintf(output, "tess_eval_vs"); else if (stage == geometry_gs) fprintf(output, "geometry_gs"); else if (stage == vertex_geometry_gs) fprintf(output, "vertex_geometry_gs"); else if (stage == tess_eval_geometry_gs) fprintf(output, "tess_eval_geometry_gs"); else if (stage == vertex_ngg) fprintf(output, "vertex_ngg"); else if (stage == tess_eval_ngg) fprintf(output, "tess_eval_ngg"); else if (stage == vertex_geometry_ngg) fprintf(output, "vertex_geometry_ngg"); else if (stage == tess_eval_geometry_ngg) fprintf(output, "tess_eval_geometry_ngg"); else fprintf(output, "unknown"); fprintf(output, "\n"); } void aco_print_block(const Block* block, FILE* output, unsigned flags, const live& live_vars) { fprintf(output, "BB%d\n", block->index); fprintf(output, "/* logical preds: "); for (unsigned pred : block->logical_preds) fprintf(output, "BB%d, ", pred); fprintf(output, "/ linear preds: "); for (unsigned pred : block->linear_preds) fprintf(output, "BB%d, ", pred); fprintf(output, "/ kind: "); print_block_kind(block->kind, output); fprintf(output, "*/\n"); if (flags & print_live_vars) { fprintf(output, "\tlive out:"); for (unsigned id : live_vars.live_out[block->index]) fprintf(output, " %%%d", id); fprintf(output, "\n"); RegisterDemand demand = block->register_demand; fprintf(output, "\tdemand: %u vgpr, %u sgpr\n", demand.vgpr, demand.sgpr); } unsigned index = 0; for (auto const& instr : block->instructions) { fprintf(output, "\t"); if (flags & print_live_vars) { RegisterDemand demand = live_vars.register_demand[block->index][index]; fprintf(output, "(%3u vgpr, %3u sgpr) ", demand.vgpr, demand.sgpr); } if (flags & print_perf_info) fprintf(output, "(%3u clk) ", instr->pass_flags); aco_print_instr(instr.get(), output, flags); fprintf(output, "\n"); index++; } } void aco_print_program(const Program* program, FILE* output, const live& live_vars, unsigned flags) { switch (program->progress) { case CompilationProgress::after_isel: fprintf(output, "After Instruction Selection:\n"); break; case CompilationProgress::after_spilling: fprintf(output, "After Spilling:\n"); flags |= print_kill; break; case CompilationProgress::after_ra: fprintf(output, "After RA:\n"); break; } print_stage(program->stage, output); for (Block const& block : program->blocks) aco_print_block(&block, output, flags, live_vars); if (program->constant_data.size()) { fprintf(output, "\n/* constant data */\n"); for (unsigned i = 0; i < program->constant_data.size(); i += 32) { fprintf(output, "[%06d] ", i); unsigned line_size = std::min(program->constant_data.size() - i, 32); for (unsigned j = 0; j < line_size; j += 4) { unsigned size = std::min(program->constant_data.size() - (i + j), 4); uint32_t v = 0; memcpy(&v, &program->constant_data[i + j], size); fprintf(output, " %08x", v); } fprintf(output, "\n"); } } fprintf(output, "\n"); } void aco_print_program(const Program* program, FILE* output, unsigned flags) { aco_print_program(program, output, live(), flags); } } // namespace aco