/* * Copyright © 2018 Valve Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "aco_ir.h" #include #include #include namespace aco { namespace { struct phi_info_item { Definition def; Operand op; }; struct ssa_elimination_ctx { /* The outer vectors should be indexed by block index. The inner vectors store phi information * for each block. */ std::vector> logical_phi_info; std::vector> linear_phi_info; std::vector empty_blocks; std::vector blocks_incoming_exec_used; Program* program; ssa_elimination_ctx(Program* program_) : logical_phi_info(program_->blocks.size()), linear_phi_info(program_->blocks.size()), empty_blocks(program_->blocks.size(), true), blocks_incoming_exec_used(program_->blocks.size(), true), program(program_) {} }; void collect_phi_info(ssa_elimination_ctx& ctx) { for (Block& block : ctx.program->blocks) { for (aco_ptr& phi : block.instructions) { if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi) break; for (unsigned i = 0; i < phi->operands.size(); i++) { if (phi->operands[i].isUndefined()) continue; if (phi->operands[i].physReg() == phi->definitions[0].physReg()) continue; assert(phi->definitions[0].size() == phi->operands[i].size()); std::vector& preds = phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds; uint32_t pred_idx = preds[i]; auto& info_vec = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info[pred_idx] : ctx.linear_phi_info[pred_idx]; info_vec.push_back({phi->definitions[0], phi->operands[i]}); ctx.empty_blocks[pred_idx] = false; } } } } void insert_parallelcopies(ssa_elimination_ctx& ctx) { /* insert the parallelcopies from logical phis before p_logical_end */ for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) { auto& logical_phi_info = ctx.logical_phi_info[block_idx]; if (logical_phi_info.empty()) continue; Block& block = ctx.program->blocks[block_idx]; unsigned idx = block.instructions.size() - 1; while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) { assert(idx > 0); idx--; } std::vector>::iterator it = std::next(block.instructions.begin(), idx); aco_ptr pc{ create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, logical_phi_info.size(), logical_phi_info.size())}; unsigned i = 0; for (auto& phi_info : logical_phi_info) { pc->definitions[i] = phi_info.def; pc->operands[i] = phi_info.op; i++; } /* this shouldn't be needed since we're only copying vgprs */ pc->tmp_in_scc = false; block.instructions.insert(it, std::move(pc)); } /* insert parallelcopies for the linear phis at the end of blocks just before the branch */ for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) { auto& linear_phi_info = ctx.linear_phi_info[block_idx]; if (linear_phi_info.empty()) continue; Block& block = ctx.program->blocks[block_idx]; std::vector>::iterator it = block.instructions.end(); --it; assert((*it)->isBranch()); aco_ptr pc{ create_instruction(aco_opcode::p_parallelcopy, Format::PSEUDO, linear_phi_info.size(), linear_phi_info.size())}; unsigned i = 0; for (auto& phi_info : linear_phi_info) { pc->definitions[i] = phi_info.def; pc->operands[i] = phi_info.op; i++; } pc->tmp_in_scc = block.scc_live_out; pc->scratch_sgpr = block.scratch_sgpr; block.instructions.insert(it, std::move(pc)); } } bool is_empty_block(Block* block, bool ignore_exec_writes) { /* check if this block is empty and the exec mask is not needed */ for (aco_ptr& instr : block->instructions) { switch (instr->opcode) { case aco_opcode::p_linear_phi: case aco_opcode::p_phi: case aco_opcode::p_logical_start: case aco_opcode::p_logical_end: case aco_opcode::p_branch: break; case aco_opcode::p_parallelcopy: for (unsigned i = 0; i < instr->definitions.size(); i++) { if (ignore_exec_writes && instr->definitions[i].physReg() == exec) continue; if (instr->definitions[i].physReg() != instr->operands[i].physReg()) return false; } break; case aco_opcode::s_andn2_b64: case aco_opcode::s_andn2_b32: if (ignore_exec_writes && instr->definitions[0].physReg() == exec) break; return false; default: return false; } } return true; } void try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block) { /* check if the successor is another merge block which restores exec */ // TODO: divergent loops also restore exec if (block->linear_succs.size() != 1 || !(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge)) return; /* check if this block is empty */ if (!is_empty_block(block, true)) return; /* keep the branch instruction and remove the rest */ aco_ptr branch = std::move(block->instructions.back()); block->instructions.clear(); block->instructions.emplace_back(std::move(branch)); } void try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block) { assert(block->linear_succs.size() == 2); /* only remove this block if the successor got removed as well */ if (block->linear_succs[0] != block->linear_succs[1]) return; /* check if block is otherwise empty */ if (!is_empty_block(block, true)) return; unsigned succ_idx = block->linear_succs[0]; assert(block->linear_preds.size() == 2); for (unsigned i = 0; i < 2; i++) { Block* pred = &ctx.program->blocks[block->linear_preds[i]]; pred->linear_succs[0] = succ_idx; ctx.program->blocks[succ_idx].linear_preds[i] = pred->index; Pseudo_branch_instruction& branch = pred->instructions.back()->branch(); assert(branch.isBranch()); branch.target[0] = succ_idx; branch.target[1] = succ_idx; } block->instructions.clear(); block->linear_preds.clear(); block->linear_succs.clear(); } void try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block) { if (!is_empty_block(block, false)) return; Block& pred = ctx.program->blocks[block->linear_preds[0]]; Block& succ = ctx.program->blocks[block->linear_succs[0]]; Pseudo_branch_instruction& branch = pred.instructions.back()->branch(); if (branch.opcode == aco_opcode::p_branch) { branch.target[0] = succ.index; branch.target[1] = succ.index; } else if (branch.target[0] == block->index) { branch.target[0] = succ.index; } else if (branch.target[0] == succ.index) { assert(branch.target[1] == block->index); branch.target[1] = succ.index; branch.opcode = aco_opcode::p_branch; } else if (branch.target[1] == block->index) { /* check if there is a fall-through path from block to succ */ bool falls_through = block->index < succ.index; for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) { assert(ctx.program->blocks[j].index == j); if (!ctx.program->blocks[j].instructions.empty()) falls_through = false; } if (falls_through) { branch.target[1] = succ.index; } else { /* check if there is a fall-through path for the alternative target */ if (block->index >= branch.target[0]) return; for (unsigned j = block->index + 1; j < branch.target[0]; j++) { if (!ctx.program->blocks[j].instructions.empty()) return; } /* This is a (uniform) break or continue block. The branch condition has to be inverted. */ if (branch.opcode == aco_opcode::p_cbranch_z) branch.opcode = aco_opcode::p_cbranch_nz; else if (branch.opcode == aco_opcode::p_cbranch_nz) branch.opcode = aco_opcode::p_cbranch_z; else assert(false); /* also invert the linear successors */ pred.linear_succs[0] = pred.linear_succs[1]; pred.linear_succs[1] = succ.index; branch.target[1] = branch.target[0]; branch.target[0] = succ.index; } } else { assert(false); } if (branch.target[0] == branch.target[1]) branch.opcode = aco_opcode::p_branch; for (unsigned i = 0; i < pred.linear_succs.size(); i++) if (pred.linear_succs[i] == block->index) pred.linear_succs[i] = succ.index; for (unsigned i = 0; i < succ.linear_preds.size(); i++) if (succ.linear_preds[i] == block->index) succ.linear_preds[i] = pred.index; block->instructions.clear(); block->linear_preds.clear(); block->linear_succs.clear(); } bool instr_writes_exec(Instruction* instr) { for (Definition& def : instr->definitions) if (def.physReg() == exec || def.physReg() == exec_hi) return true; return false; } void eliminate_useless_exec_writes_in_block(ssa_elimination_ctx& ctx, Block& block) { /* Check if any successor needs the outgoing exec mask from the current block. */ bool exec_write_used; if (!ctx.logical_phi_info[block.index].empty()) { exec_write_used = true; } else { bool copy_to_exec = false; bool copy_from_exec = false; for (const auto& successor_phi_info : ctx.linear_phi_info[block.index]) { copy_to_exec |= successor_phi_info.def.physReg() == exec; copy_from_exec |= successor_phi_info.op.physReg() == exec; } if (copy_from_exec) exec_write_used = true; else if (copy_to_exec) exec_write_used = false; else /* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */ exec_write_used = std::any_of(block.linear_succs.begin(), block.linear_succs.end(), [&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; }); } /* Go through all instructions and eliminate useless exec writes. */ for (int i = block.instructions.size() - 1; i >= 0; --i) { aco_ptr& instr = block.instructions[i]; /* We already take information from phis into account before the loop, so let's just break on * phis. */ if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi) break; /* See if the current instruction needs or writes exec. */ bool needs_exec = needs_exec_mask(instr.get()); bool writes_exec = instr_writes_exec(instr.get()); /* See if we found an unused exec write. */ if (writes_exec && !exec_write_used) { instr.reset(); continue; } /* For a newly encountered exec write, clear the used flag. */ if (writes_exec) exec_write_used = false; /* If the current instruction needs exec, mark it as used. */ exec_write_used |= needs_exec; } /* Remember if the current block needs an incoming exec mask from its predecessors. */ ctx.blocks_incoming_exec_used[block.index] = exec_write_used; /* Cleanup: remove deleted instructions from the vector. */ auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr); block.instructions.resize(new_end - block.instructions.begin()); } void jump_threading(ssa_elimination_ctx& ctx) { for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) { Block* block = &ctx.program->blocks[i]; eliminate_useless_exec_writes_in_block(ctx, *block); if (!ctx.empty_blocks[i]) continue; if (block->kind & block_kind_invert) { try_remove_invert_block(ctx, block); continue; } if (block->linear_succs.size() > 1) continue; if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit) try_remove_merge_block(ctx, block); if (block->linear_preds.size() == 1) try_remove_simple_block(ctx, block); } } } /* end namespace */ void ssa_elimination(Program* program) { ssa_elimination_ctx ctx(program); /* Collect information about every phi-instruction */ collect_phi_info(ctx); /* eliminate empty blocks */ jump_threading(ctx); /* insert parallelcopies from SSA elimination */ insert_parallelcopies(ctx); } } // namespace aco