/* * Copyright © 2015 Connor Abbott * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include "nir.h" #include "nir_vla.h" #include "nir_builder.h" #include "util/u_dynarray.h" #define HASH(hash, data) XXH32(&data, sizeof(data), hash) static uint32_t hash_src(uint32_t hash, const nir_src *src) { assert(src->is_ssa); void *hash_data = nir_src_is_const(*src) ? NULL : src->ssa; return HASH(hash, hash_data); } static uint32_t hash_alu_src(uint32_t hash, const nir_alu_src *src, uint32_t num_components, uint32_t max_vec) { assert(!src->abs && !src->negate); /* hash whether a swizzle accesses elements beyond the maximum * vectorization factor: * For example accesses to .x and .y are considered different variables * compared to accesses to .z and .w for 16-bit vec2. */ uint32_t swizzle = (src->swizzle[0] & ~(max_vec - 1)); hash = HASH(hash, swizzle); return hash_src(hash, &src->src); } static uint32_t hash_instr(const void *data) { const nir_instr *instr = (nir_instr *) data; assert(instr->type == nir_instr_type_alu); nir_alu_instr *alu = nir_instr_as_alu(instr); uint32_t hash = HASH(0, alu->op); hash = HASH(hash, alu->dest.dest.ssa.bit_size); for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) hash = hash_alu_src(hash, &alu->src[i], alu->dest.dest.ssa.num_components, instr->pass_flags); return hash; } static bool srcs_equal(const nir_src *src1, const nir_src *src2) { assert(src1->is_ssa); assert(src2->is_ssa); return src1->ssa == src2->ssa || (nir_src_is_const(*src1) && nir_src_is_const(*src2)); } static bool alu_srcs_equal(const nir_alu_src *src1, const nir_alu_src *src2, uint32_t max_vec) { assert(!src1->abs); assert(!src1->negate); assert(!src2->abs); assert(!src2->negate); uint32_t mask = ~(max_vec - 1); if ((src1->swizzle[0] & mask) != (src2->swizzle[0] & mask)) return false; return srcs_equal(&src1->src, &src2->src); } static bool instrs_equal(const void *data1, const void *data2) { const nir_instr *instr1 = (nir_instr *) data1; const nir_instr *instr2 = (nir_instr *) data2; assert(instr1->type == nir_instr_type_alu); assert(instr2->type == nir_instr_type_alu); nir_alu_instr *alu1 = nir_instr_as_alu(instr1); nir_alu_instr *alu2 = nir_instr_as_alu(instr2); if (alu1->op != alu2->op) return false; if (alu1->dest.dest.ssa.bit_size != alu2->dest.dest.ssa.bit_size) return false; for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) { if (!alu_srcs_equal(&alu1->src[i], &alu2->src[i], instr1->pass_flags)) return false; } return true; } static bool instr_can_rewrite(nir_instr *instr, bool vectorize_16bit) { switch (instr->type) { case nir_instr_type_alu: { nir_alu_instr *alu = nir_instr_as_alu(instr); /* Don't try and vectorize mov's. Either they'll be handled by copy * prop, or they're actually necessary and trying to vectorize them * would result in fighting with copy prop. */ if (alu->op == nir_op_mov) return false; /* no need to hash instructions which are already vectorized */ if (alu->dest.dest.ssa.num_components >= 4) return false; if (vectorize_16bit && (alu->dest.dest.ssa.num_components >= 2 || alu->dest.dest.ssa.bit_size != 16)) return false; if (nir_op_infos[alu->op].output_size != 0) return false; for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) { if (nir_op_infos[alu->op].input_sizes[i] != 0) return false; /* don't hash instructions which are already swizzled * outside of max_components: these should better be scalarized */ uint32_t mask = vectorize_16bit ? ~1 : ~3; for (unsigned j = 0; j < alu->dest.dest.ssa.num_components; j++) { if ((alu->src[i].swizzle[0] & mask) != (alu->src[i].swizzle[j] & mask)) return false; } } return true; } /* TODO support phi nodes */ default: break; } return false; } /* * Tries to combine two instructions whose sources are different components of * the same instructions into one vectorized instruction. Note that instr1 * should dominate instr2. */ static nir_instr * instr_try_combine(struct nir_shader *nir, struct set *instr_set, nir_instr *instr1, nir_instr *instr2) { assert(instr1->type == nir_instr_type_alu); assert(instr2->type == nir_instr_type_alu); nir_alu_instr *alu1 = nir_instr_as_alu(instr1); nir_alu_instr *alu2 = nir_instr_as_alu(instr2); assert(alu1->dest.dest.ssa.bit_size == alu2->dest.dest.ssa.bit_size); unsigned alu1_components = alu1->dest.dest.ssa.num_components; unsigned alu2_components = alu2->dest.dest.ssa.num_components; unsigned total_components = alu1_components + alu2_components; if (total_components > 4) return NULL; if (nir->options->vectorize_vec2_16bit) { assert(total_components == 2); assert(alu1->dest.dest.ssa.bit_size == 16); } nir_builder b; nir_builder_init(&b, nir_cf_node_get_function(&instr1->block->cf_node)); b.cursor = nir_after_instr(instr1); nir_alu_instr *new_alu = nir_alu_instr_create(b.shader, alu1->op); nir_ssa_dest_init(&new_alu->instr, &new_alu->dest.dest, total_components, alu1->dest.dest.ssa.bit_size, NULL); new_alu->dest.write_mask = (1 << total_components) - 1; new_alu->instr.pass_flags = alu1->instr.pass_flags; /* If either channel is exact, we have to preserve it even if it's * not optimal for other channels. */ new_alu->exact = alu1->exact || alu2->exact; /* If all channels don't wrap, we can say that the whole vector doesn't * wrap. */ new_alu->no_signed_wrap = alu1->no_signed_wrap && alu2->no_signed_wrap; new_alu->no_unsigned_wrap = alu1->no_unsigned_wrap && alu2->no_unsigned_wrap; for (unsigned i = 0; i < nir_op_infos[alu1->op].num_inputs; i++) { /* handle constant merging case */ if (alu1->src[i].src.ssa != alu2->src[i].src.ssa) { nir_const_value *c1 = nir_src_as_const_value(alu1->src[i].src); nir_const_value *c2 = nir_src_as_const_value(alu2->src[i].src); assert(c1 && c2); nir_const_value value[NIR_MAX_VEC_COMPONENTS]; unsigned bit_size = alu1->src[i].src.ssa->bit_size; for (unsigned j = 0; j < total_components; j++) { value[j].u64 = j < alu1_components ? c1[alu1->src[i].swizzle[j]].u64 : c2[alu2->src[i].swizzle[j - alu1_components]].u64; } nir_ssa_def *def = nir_build_imm(&b, total_components, bit_size, value); new_alu->src[i].src = nir_src_for_ssa(def); for (unsigned j = 0; j < total_components; j++) new_alu->src[i].swizzle[j] = j; continue; } new_alu->src[i].src = alu1->src[i].src; for (unsigned j = 0; j < alu1_components; j++) new_alu->src[i].swizzle[j] = alu1->src[i].swizzle[j]; for (unsigned j = 0; j < alu2_components; j++) { new_alu->src[i].swizzle[j + alu1_components] = alu2->src[i].swizzle[j]; } } nir_builder_instr_insert(&b, &new_alu->instr); unsigned swiz[NIR_MAX_VEC_COMPONENTS]; for (unsigned i = 0; i < NIR_MAX_VEC_COMPONENTS; i++) swiz[i] = i; nir_ssa_def *new_alu1 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz, alu1_components); for (unsigned i = 0; i < alu2_components; i++) swiz[i] += alu1_components; nir_ssa_def *new_alu2 = nir_swizzle(&b, &new_alu->dest.dest.ssa, swiz, alu2_components); nir_foreach_use_safe(src, &alu1->dest.dest.ssa) { nir_instr *user_instr = src->parent_instr; if (user_instr->type == nir_instr_type_alu) { /* Check if user is found in the hashset */ struct set_entry *entry = _mesa_set_search(instr_set, user_instr); /* For ALU instructions, rewrite the source directly to avoid a * round-trip through copy propagation. */ nir_instr_rewrite_src(user_instr, src, nir_src_for_ssa(&new_alu->dest.dest.ssa)); /* Rehash user if it was found in the hashset */ if (entry && entry->key == user_instr) { _mesa_set_remove(instr_set, entry); _mesa_set_add(instr_set, src->parent_instr); } } else { nir_instr_rewrite_src(user_instr, src, nir_src_for_ssa(new_alu1)); } } nir_foreach_if_use_safe(src, &alu1->dest.dest.ssa) { nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu1)); } assert(nir_ssa_def_is_unused(&alu1->dest.dest.ssa)); nir_foreach_use_safe(src, &alu2->dest.dest.ssa) { if (src->parent_instr->type == nir_instr_type_alu) { /* For ALU instructions, rewrite the source directly to avoid a * round-trip through copy propagation. */ nir_alu_instr *use = nir_instr_as_alu(src->parent_instr); unsigned src_index = 5; for (unsigned i = 0; i < nir_op_infos[use->op].num_inputs; i++) { if (&use->src[i].src == src) { src_index = i; break; } } assert(src_index != 5); nir_instr_rewrite_src(src->parent_instr, src, nir_src_for_ssa(&new_alu->dest.dest.ssa)); for (unsigned i = 0; i < nir_ssa_alu_instr_src_components(use, src_index); i++) { use->src[src_index].swizzle[i] += alu1_components; } } else { nir_instr_rewrite_src(src->parent_instr, src, nir_src_for_ssa(new_alu2)); } } nir_foreach_if_use_safe(src, &alu2->dest.dest.ssa) { nir_if_rewrite_condition(src->parent_if, nir_src_for_ssa(new_alu2)); } assert(nir_ssa_def_is_unused(&alu2->dest.dest.ssa)); nir_instr_remove(instr1); nir_instr_remove(instr2); return &new_alu->instr; } static struct set * vec_instr_set_create(void) { return _mesa_set_create(NULL, hash_instr, instrs_equal); } static void vec_instr_set_destroy(struct set *instr_set) { _mesa_set_destroy(instr_set, NULL); } static bool vec_instr_set_add_or_rewrite(struct nir_shader *nir, struct set *instr_set, nir_instr *instr, nir_opt_vectorize_cb filter, void *data) { if (!instr_can_rewrite(instr, nir->options->vectorize_vec2_16bit)) return false; if (filter && !filter(instr, data)) return false; /* set max vector to instr pass flags: this is used to hash swizzles */ instr->pass_flags = nir->options->vectorize_vec2_16bit ? 2 : 4; struct set_entry *entry = _mesa_set_search(instr_set, instr); if (entry) { nir_instr *old_instr = (nir_instr *) entry->key; _mesa_set_remove(instr_set, entry); nir_instr *new_instr = instr_try_combine(nir, instr_set, old_instr, instr); if (new_instr) { if (instr_can_rewrite(new_instr, nir->options->vectorize_vec2_16bit) && (!filter || filter(new_instr, data))) _mesa_set_add(instr_set, new_instr); return true; } } _mesa_set_add(instr_set, instr); return false; } static bool vectorize_block(struct nir_shader *nir, nir_block *block, struct set *instr_set, nir_opt_vectorize_cb filter, void *data) { bool progress = false; nir_foreach_instr_safe(instr, block) { if (vec_instr_set_add_or_rewrite(nir, instr_set, instr, filter, data)) progress = true; } for (unsigned i = 0; i < block->num_dom_children; i++) { nir_block *child = block->dom_children[i]; progress |= vectorize_block(nir, child, instr_set, filter, data); } nir_foreach_instr_reverse(instr, block) { if (instr_can_rewrite(instr, nir->options->vectorize_vec2_16bit) && (!filter || filter(instr, data))) _mesa_set_remove_key(instr_set, instr); } return progress; } static bool nir_opt_vectorize_impl(struct nir_shader *nir, nir_function_impl *impl, nir_opt_vectorize_cb filter, void *data) { struct set *instr_set = vec_instr_set_create(); nir_metadata_require(impl, nir_metadata_dominance); bool progress = vectorize_block(nir, nir_start_block(impl), instr_set, filter, data); if (progress) { nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); } else { nir_metadata_preserve(impl, nir_metadata_all); } vec_instr_set_destroy(instr_set); return progress; } bool nir_opt_vectorize(nir_shader *shader, nir_opt_vectorize_cb filter, void *data) { bool progress = false; nir_foreach_function(function, shader) { if (function->impl) progress |= nir_opt_vectorize_impl(shader, function->impl, filter, data); } return progress; }