/* * Copyright © 2018 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "nir.h" #include "nir_range_analysis.h" #include "util/hash_table.h" /** * Analyzes a sequence of operations to determine some aspects of the range of * the result. */ static bool is_not_negative(enum ssa_ranges r) { return r == gt_zero || r == ge_zero || r == eq_zero; } static bool is_not_zero(enum ssa_ranges r) { return r == gt_zero || r == lt_zero || r == ne_zero; } static void * pack_data(const struct ssa_result_range r) { return (void *)(uintptr_t)(r.range | r.is_integral << 8 | r.is_finite << 9 | r.is_a_number << 10); } static struct ssa_result_range unpack_data(const void *p) { const uintptr_t v = (uintptr_t) p; return (struct ssa_result_range){ .range = v & 0xff, .is_integral = (v & 0x00100) != 0, .is_finite = (v & 0x00200) != 0, .is_a_number = (v & 0x00400) != 0 }; } static void * pack_key(const struct nir_alu_instr *instr, nir_alu_type type) { uintptr_t type_encoding; uintptr_t ptr = (uintptr_t) instr; /* The low 2 bits have to be zero or this whole scheme falls apart. */ assert((ptr & 0x3) == 0); /* NIR is typeless in the sense that sequences of bits have whatever * meaning is attached to them by the instruction that consumes them. * However, the number of bits must match between producer and consumer. * As a result, the number of bits does not need to be encoded here. */ switch (nir_alu_type_get_base_type(type)) { case nir_type_int: type_encoding = 0; break; case nir_type_uint: type_encoding = 1; break; case nir_type_bool: type_encoding = 2; break; case nir_type_float: type_encoding = 3; break; default: unreachable("Invalid base type."); } return (void *)(ptr | type_encoding); } static nir_alu_type nir_alu_src_type(const nir_alu_instr *instr, unsigned src) { return nir_alu_type_get_base_type(nir_op_infos[instr->op].input_types[src]) | nir_src_bit_size(instr->src[src].src); } static struct ssa_result_range analyze_constant(const struct nir_alu_instr *instr, unsigned src, nir_alu_type use_type) { uint8_t swizzle[NIR_MAX_VEC_COMPONENTS] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; /* If the source is an explicitly sized source, then we need to reset * both the number of components and the swizzle. */ const unsigned num_components = nir_ssa_alu_instr_src_components(instr, src); for (unsigned i = 0; i < num_components; ++i) swizzle[i] = instr->src[src].swizzle[i]; const nir_load_const_instr *const load = nir_instr_as_load_const(instr->src[src].src.ssa->parent_instr); struct ssa_result_range r = { unknown, false, false, false }; switch (nir_alu_type_get_base_type(use_type)) { case nir_type_float: { double min_value = DBL_MAX; double max_value = -DBL_MAX; bool any_zero = false; bool all_zero = true; r.is_integral = true; r.is_a_number = true; r.is_finite = true; for (unsigned i = 0; i < num_components; ++i) { const double v = nir_const_value_as_float(load->value[swizzle[i]], load->def.bit_size); if (floor(v) != v) r.is_integral = false; if (isnan(v)) r.is_a_number = false; if (!isfinite(v)) r.is_finite = false; any_zero = any_zero || (v == 0.0); all_zero = all_zero && (v == 0.0); min_value = MIN2(min_value, v); max_value = MAX2(max_value, v); } assert(any_zero >= all_zero); assert(isnan(max_value) || max_value >= min_value); if (all_zero) r.range = eq_zero; else if (min_value > 0.0) r.range = gt_zero; else if (min_value == 0.0) r.range = ge_zero; else if (max_value < 0.0) r.range = lt_zero; else if (max_value == 0.0) r.range = le_zero; else if (!any_zero) r.range = ne_zero; else r.range = unknown; return r; } case nir_type_int: case nir_type_bool: { int64_t min_value = INT_MAX; int64_t max_value = INT_MIN; bool any_zero = false; bool all_zero = true; for (unsigned i = 0; i < num_components; ++i) { const int64_t v = nir_const_value_as_int(load->value[swizzle[i]], load->def.bit_size); any_zero = any_zero || (v == 0); all_zero = all_zero && (v == 0); min_value = MIN2(min_value, v); max_value = MAX2(max_value, v); } assert(any_zero >= all_zero); assert(max_value >= min_value); if (all_zero) r.range = eq_zero; else if (min_value > 0) r.range = gt_zero; else if (min_value == 0) r.range = ge_zero; else if (max_value < 0) r.range = lt_zero; else if (max_value == 0) r.range = le_zero; else if (!any_zero) r.range = ne_zero; else r.range = unknown; return r; } case nir_type_uint: { bool any_zero = false; bool all_zero = true; for (unsigned i = 0; i < num_components; ++i) { const uint64_t v = nir_const_value_as_uint(load->value[swizzle[i]], load->def.bit_size); any_zero = any_zero || (v == 0); all_zero = all_zero && (v == 0); } assert(any_zero >= all_zero); if (all_zero) r.range = eq_zero; else if (any_zero) r.range = ge_zero; else r.range = gt_zero; return r; } default: unreachable("Invalid alu source type"); } } /** * Short-hand name for use in the tables in analyze_expression. If this name * becomes a problem on some compiler, we can change it to _. */ #define _______ unknown #if defined(__clang__) /* clang wants _Pragma("unroll X") */ #define pragma_unroll_5 _Pragma("unroll 5") #define pragma_unroll_7 _Pragma("unroll 7") /* gcc wants _Pragma("GCC unroll X") */ #elif defined(__GNUC__) #if __GNUC__ >= 8 #define pragma_unroll_5 _Pragma("GCC unroll 5") #define pragma_unroll_7 _Pragma("GCC unroll 7") #else #pragma GCC optimize ("unroll-loops") #define pragma_unroll_5 #define pragma_unroll_7 #endif #else /* MSVC doesn't have C99's _Pragma() */ #define pragma_unroll_5 #define pragma_unroll_7 #endif #ifndef NDEBUG #define ASSERT_TABLE_IS_COMMUTATIVE(t) \ do { \ static bool first = true; \ if (first) { \ first = false; \ pragma_unroll_7 \ for (unsigned r = 0; r < ARRAY_SIZE(t); r++) { \ pragma_unroll_7 \ for (unsigned c = 0; c < ARRAY_SIZE(t[0]); c++) \ assert(t[r][c] == t[c][r]); \ } \ } \ } while (false) #define ASSERT_TABLE_IS_DIAGONAL(t) \ do { \ static bool first = true; \ if (first) { \ first = false; \ pragma_unroll_7 \ for (unsigned r = 0; r < ARRAY_SIZE(t); r++) \ assert(t[r][r] == r); \ } \ } while (false) #else #define ASSERT_TABLE_IS_COMMUTATIVE(t) #define ASSERT_TABLE_IS_DIAGONAL(t) #endif /* !defined(NDEBUG) */ static enum ssa_ranges union_ranges(enum ssa_ranges a, enum ssa_ranges b) { static const enum ssa_ranges union_table[last_range + 1][last_range + 1] = { /* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ /* unknown */ { _______, _______, _______, _______, _______, _______, _______ }, /* lt_zero */ { _______, lt_zero, le_zero, ne_zero, _______, ne_zero, le_zero }, /* le_zero */ { _______, le_zero, le_zero, _______, _______, _______, le_zero }, /* gt_zero */ { _______, ne_zero, _______, gt_zero, ge_zero, ne_zero, ge_zero }, /* ge_zero */ { _______, _______, _______, ge_zero, ge_zero, _______, ge_zero }, /* ne_zero */ { _______, ne_zero, _______, ne_zero, _______, ne_zero, _______ }, /* eq_zero */ { _______, le_zero, le_zero, ge_zero, ge_zero, _______, eq_zero }, }; ASSERT_TABLE_IS_COMMUTATIVE(union_table); ASSERT_TABLE_IS_DIAGONAL(union_table); return union_table[a][b]; } #ifndef NDEBUG /* Verify that the 'unknown' entry in each row (or column) of the table is the * union of all the other values in the row (or column). */ #define ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(t) \ do { \ static bool first = true; \ if (first) { \ first = false; \ pragma_unroll_7 \ for (unsigned i = 0; i < last_range; i++) { \ enum ssa_ranges col_range = t[i][unknown + 1]; \ enum ssa_ranges row_range = t[unknown + 1][i]; \ \ pragma_unroll_5 \ for (unsigned j = unknown + 2; j < last_range; j++) { \ col_range = union_ranges(col_range, t[i][j]); \ row_range = union_ranges(row_range, t[j][i]); \ } \ \ assert(col_range == t[i][unknown]); \ assert(row_range == t[unknown][i]); \ } \ } \ } while (false) /* For most operations, the union of ranges for a strict inequality and * equality should be the range of the non-strict inequality (e.g., * union_ranges(range(op(lt_zero), range(op(eq_zero))) == range(op(le_zero)). * * Does not apply to selection-like opcodes (bcsel, fmin, fmax, etc.). */ #define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(t) \ do { \ assert(union_ranges(t[lt_zero], t[eq_zero]) == t[le_zero]); \ assert(union_ranges(t[gt_zero], t[eq_zero]) == t[ge_zero]); \ } while (false) #define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(t) \ do { \ static bool first = true; \ if (first) { \ first = false; \ pragma_unroll_7 \ for (unsigned i = 0; i < last_range; i++) { \ assert(union_ranges(t[i][lt_zero], t[i][eq_zero]) == t[i][le_zero]); \ assert(union_ranges(t[i][gt_zero], t[i][eq_zero]) == t[i][ge_zero]); \ assert(union_ranges(t[lt_zero][i], t[eq_zero][i]) == t[le_zero][i]); \ assert(union_ranges(t[gt_zero][i], t[eq_zero][i]) == t[ge_zero][i]); \ } \ } \ } while (false) /* Several other unordered tuples span the range of "everything." Each should * have the same value as unknown: (lt_zero, ge_zero), (le_zero, gt_zero), and * (eq_zero, ne_zero). union_ranges is already commutative, so only one * ordering needs to be checked. * * Does not apply to selection-like opcodes (bcsel, fmin, fmax, etc.). * * In cases where this can be used, it is unnecessary to also use * ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_*_SOURCE. For any range X, * union_ranges(X, X) == X. The disjoint ranges cover all of the non-unknown * possibilities, so the union of all the unions of disjoint ranges is * equivalent to the union of "others." */ #define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(t) \ do { \ assert(union_ranges(t[lt_zero], t[ge_zero]) == t[unknown]); \ assert(union_ranges(t[le_zero], t[gt_zero]) == t[unknown]); \ assert(union_ranges(t[eq_zero], t[ne_zero]) == t[unknown]); \ } while (false) #define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(t) \ do { \ static bool first = true; \ if (first) { \ first = false; \ pragma_unroll_7 \ for (unsigned i = 0; i < last_range; i++) { \ assert(union_ranges(t[i][lt_zero], t[i][ge_zero]) == \ t[i][unknown]); \ assert(union_ranges(t[i][le_zero], t[i][gt_zero]) == \ t[i][unknown]); \ assert(union_ranges(t[i][eq_zero], t[i][ne_zero]) == \ t[i][unknown]); \ \ assert(union_ranges(t[lt_zero][i], t[ge_zero][i]) == \ t[unknown][i]); \ assert(union_ranges(t[le_zero][i], t[gt_zero][i]) == \ t[unknown][i]); \ assert(union_ranges(t[eq_zero][i], t[ne_zero][i]) == \ t[unknown][i]); \ } \ } \ } while (false) #else #define ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(t) #define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(t) #define ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(t) #define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(t) #define ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(t) #endif /* !defined(NDEBUG) */ /** * Analyze an expression to determine the range of its result * * The end result of this analysis is a token that communicates something * about the range of values. There's an implicit grammar that produces * tokens from sequences of literal values, other tokens, and operations. * This function implements this grammar as a recursive-descent parser. Some * (but not all) of the grammar is listed in-line in the function. */ static struct ssa_result_range analyze_expression(const nir_alu_instr *instr, unsigned src, struct hash_table *ht, nir_alu_type use_type) { /* Ensure that the _Pragma("GCC unroll 7") above are correct. */ STATIC_ASSERT(last_range + 1 == 7); if (!instr->src[src].src.is_ssa) return (struct ssa_result_range){unknown, false, false, false}; if (nir_src_is_const(instr->src[src].src)) return analyze_constant(instr, src, use_type); if (instr->src[src].src.ssa->parent_instr->type != nir_instr_type_alu) return (struct ssa_result_range){unknown, false, false, false}; const struct nir_alu_instr *const alu = nir_instr_as_alu(instr->src[src].src.ssa->parent_instr); /* Bail if the type of the instruction generating the value does not match * the type the value will be interpreted as. int/uint/bool can be * reinterpreted trivially. The most important cases are between float and * non-float. */ if (alu->op != nir_op_mov && alu->op != nir_op_bcsel) { const nir_alu_type use_base_type = nir_alu_type_get_base_type(use_type); const nir_alu_type src_base_type = nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type); if (use_base_type != src_base_type && (use_base_type == nir_type_float || src_base_type == nir_type_float)) { return (struct ssa_result_range){unknown, false, false, false}; } } struct hash_entry *he = _mesa_hash_table_search(ht, pack_key(alu, use_type)); if (he != NULL) return unpack_data(he->data); struct ssa_result_range r = {unknown, false, false, false}; /* ge_zero: ge_zero + ge_zero * * gt_zero: gt_zero + eq_zero * | gt_zero + ge_zero * | eq_zero + gt_zero # Addition is commutative * | ge_zero + gt_zero # Addition is commutative * | gt_zero + gt_zero * ; * * le_zero: le_zero + le_zero * * lt_zero: lt_zero + eq_zero * | lt_zero + le_zero * | eq_zero + lt_zero # Addition is commutative * | le_zero + lt_zero # Addition is commutative * | lt_zero + lt_zero * ; * * ne_zero: eq_zero + ne_zero * | ne_zero + eq_zero # Addition is commutative * ; * * eq_zero: eq_zero + eq_zero * ; * * All other cases are 'unknown'. The seeming odd entry is (ne_zero, * ne_zero), but that could be (-5, +5) which is not ne_zero. */ static const enum ssa_ranges fadd_table[last_range + 1][last_range + 1] = { /* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ /* unknown */ { _______, _______, _______, _______, _______, _______, _______ }, /* lt_zero */ { _______, lt_zero, lt_zero, _______, _______, _______, lt_zero }, /* le_zero */ { _______, lt_zero, le_zero, _______, _______, _______, le_zero }, /* gt_zero */ { _______, _______, _______, gt_zero, gt_zero, _______, gt_zero }, /* ge_zero */ { _______, _______, _______, gt_zero, ge_zero, _______, ge_zero }, /* ne_zero */ { _______, _______, _______, _______, _______, _______, ne_zero }, /* eq_zero */ { _______, lt_zero, le_zero, gt_zero, ge_zero, ne_zero, eq_zero }, }; ASSERT_TABLE_IS_COMMUTATIVE(fadd_table); ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(fadd_table); ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(fadd_table); /* Due to flush-to-zero semanatics of floating-point numbers with very * small mangnitudes, we can never really be sure a result will be * non-zero. * * ge_zero: ge_zero * ge_zero * | ge_zero * gt_zero * | ge_zero * eq_zero * | le_zero * lt_zero * | lt_zero * le_zero # Multiplication is commutative * | le_zero * le_zero * | gt_zero * ge_zero # Multiplication is commutative * | eq_zero * ge_zero # Multiplication is commutative * | a * a # Left source == right source * | gt_zero * gt_zero * | lt_zero * lt_zero * ; * * le_zero: ge_zero * le_zero * | ge_zero * lt_zero * | lt_zero * ge_zero # Multiplication is commutative * | le_zero * ge_zero # Multiplication is commutative * | le_zero * gt_zero * | lt_zero * gt_zero * | gt_zero * lt_zero # Multiplication is commutative * ; * * eq_zero: eq_zero * * * eq_zero # Multiplication is commutative * * All other cases are 'unknown'. */ static const enum ssa_ranges fmul_table[last_range + 1][last_range + 1] = { /* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ /* unknown */ { _______, _______, _______, _______, _______, _______, eq_zero }, /* lt_zero */ { _______, ge_zero, ge_zero, le_zero, le_zero, _______, eq_zero }, /* le_zero */ { _______, ge_zero, ge_zero, le_zero, le_zero, _______, eq_zero }, /* gt_zero */ { _______, le_zero, le_zero, ge_zero, ge_zero, _______, eq_zero }, /* ge_zero */ { _______, le_zero, le_zero, ge_zero, ge_zero, _______, eq_zero }, /* ne_zero */ { _______, _______, _______, _______, _______, _______, eq_zero }, /* eq_zero */ { eq_zero, eq_zero, eq_zero, eq_zero, eq_zero, eq_zero, eq_zero } }; ASSERT_TABLE_IS_COMMUTATIVE(fmul_table); ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(fmul_table); ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(fmul_table); static const enum ssa_ranges fneg_table[last_range + 1] = { /* unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ _______, gt_zero, ge_zero, lt_zero, le_zero, ne_zero, eq_zero }; ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(fneg_table); ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(fneg_table); switch (alu->op) { case nir_op_b2f32: case nir_op_b2i32: /* b2f32 will generate either 0.0 or 1.0. This case is trivial. * * b2i32 will generate either 0x00000000 or 0x00000001. When those bit * patterns are interpreted as floating point, they are 0.0 and * 1.401298464324817e-45. The latter is subnormal, but it is finite and * a number. */ r = (struct ssa_result_range){ge_zero, alu->op == nir_op_b2f32, true, true}; break; case nir_op_bcsel: { const struct ssa_result_range left = analyze_expression(alu, 1, ht, use_type); const struct ssa_result_range right = analyze_expression(alu, 2, ht, use_type); r.is_integral = left.is_integral && right.is_integral; /* This could be better, but it would require a lot of work. For * example, the result of the following is a number: * * bcsel(a > 0.0, a, 38.6) * * If the result of 'a > 0.0' is true, then the use of 'a' in the true * part of the bcsel must be a number. * * Other cases are even more challenging. * * bcsel(a > 0.5, a - 0.5, 0.0) */ r.is_a_number = left.is_a_number && right.is_a_number; r.is_finite = left.is_finite && right.is_finite; r.range = union_ranges(left.range, right.range); break; } case nir_op_i2f32: case nir_op_u2f32: r = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); r.is_integral = true; r.is_a_number = true; r.is_finite = true; if (r.range == unknown && alu->op == nir_op_u2f32) r.range = ge_zero; break; case nir_op_fabs: r = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); switch (r.range) { case unknown: case le_zero: case ge_zero: r.range = ge_zero; break; case lt_zero: case gt_zero: case ne_zero: r.range = gt_zero; break; case eq_zero: break; } break; case nir_op_fadd: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); const struct ssa_result_range right = analyze_expression(alu, 1, ht, nir_alu_src_type(alu, 1)); r.is_integral = left.is_integral && right.is_integral; r.range = fadd_table[left.range][right.range]; /* X + Y is NaN if either operand is NaN or if one operand is +Inf and * the other is -Inf. If neither operand is NaN and at least one of the * operands is finite, then the result cannot be NaN. */ r.is_a_number = left.is_a_number && right.is_a_number && (left.is_finite || right.is_finite); break; } case nir_op_fexp2: { /* If the parameter might be less than zero, the mathematically result * will be on (0, 1). For sufficiently large magnitude negative * parameters, the result will flush to zero. */ static const enum ssa_ranges table[last_range + 1] = { /* unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ ge_zero, ge_zero, ge_zero, gt_zero, gt_zero, ge_zero, gt_zero }; r = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_1_SOURCE(table); ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_1_SOURCE(table); r.is_integral = r.is_integral && is_not_negative(r.range); r.range = table[r.range]; /* Various cases can result in NaN, so assume the worst. */ r.is_finite = false; r.is_a_number = false; break; } case nir_op_fmax: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); const struct ssa_result_range right = analyze_expression(alu, 1, ht, nir_alu_src_type(alu, 1)); r.is_integral = left.is_integral && right.is_integral; /* This is conservative. It may be possible to determine that the * result must be finite in more cases, but it would take some effort to * work out all the corners. For example, fmax({lt_zero, finite}, * {lt_zero}) should result in {lt_zero, finite}. */ r.is_finite = left.is_finite && right.is_finite; /* If one source is NaN, fmax always picks the other source. */ r.is_a_number = left.is_a_number || right.is_a_number; /* gt_zero: fmax(gt_zero, *) * | fmax(*, gt_zero) # Treat fmax as commutative * ; * * ge_zero: fmax(ge_zero, ne_zero) * | fmax(ge_zero, lt_zero) * | fmax(ge_zero, le_zero) * | fmax(ge_zero, eq_zero) * | fmax(ne_zero, ge_zero) # Treat fmax as commutative * | fmax(lt_zero, ge_zero) # Treat fmax as commutative * | fmax(le_zero, ge_zero) # Treat fmax as commutative * | fmax(eq_zero, ge_zero) # Treat fmax as commutative * | fmax(ge_zero, ge_zero) * ; * * le_zero: fmax(le_zero, lt_zero) * | fmax(lt_zero, le_zero) # Treat fmax as commutative * | fmax(le_zero, le_zero) * ; * * lt_zero: fmax(lt_zero, lt_zero) * ; * * ne_zero: fmax(ne_zero, lt_zero) * | fmax(lt_zero, ne_zero) # Treat fmax as commutative * | fmax(ne_zero, ne_zero) * ; * * eq_zero: fmax(eq_zero, le_zero) * | fmax(eq_zero, lt_zero) * | fmax(le_zero, eq_zero) # Treat fmax as commutative * | fmax(lt_zero, eq_zero) # Treat fmax as commutative * | fmax(eq_zero, eq_zero) * ; * * All other cases are 'unknown'. */ static const enum ssa_ranges table[last_range + 1][last_range + 1] = { /* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ /* unknown */ { _______, _______, _______, gt_zero, ge_zero, _______, _______ }, /* lt_zero */ { _______, lt_zero, le_zero, gt_zero, ge_zero, ne_zero, eq_zero }, /* le_zero */ { _______, le_zero, le_zero, gt_zero, ge_zero, _______, eq_zero }, /* gt_zero */ { gt_zero, gt_zero, gt_zero, gt_zero, gt_zero, gt_zero, gt_zero }, /* ge_zero */ { ge_zero, ge_zero, ge_zero, gt_zero, ge_zero, ge_zero, ge_zero }, /* ne_zero */ { _______, ne_zero, _______, gt_zero, ge_zero, ne_zero, _______ }, /* eq_zero */ { _______, eq_zero, eq_zero, gt_zero, ge_zero, _______, eq_zero } }; /* Treat fmax as commutative. */ ASSERT_TABLE_IS_COMMUTATIVE(table); ASSERT_TABLE_IS_DIAGONAL(table); ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(table); r.range = table[left.range][right.range]; /* Recall that when either value is NaN, fmax will pick the other value. * This means the result range of the fmax will either be the "ideal" * result range (calculated above) or the range of the non-NaN value. */ if (!left.is_a_number) r.range = union_ranges(r.range, right.range); if (!right.is_a_number) r.range = union_ranges(r.range, left.range); break; } case nir_op_fmin: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); const struct ssa_result_range right = analyze_expression(alu, 1, ht, nir_alu_src_type(alu, 1)); r.is_integral = left.is_integral && right.is_integral; /* This is conservative. It may be possible to determine that the * result must be finite in more cases, but it would take some effort to * work out all the corners. For example, fmin({gt_zero, finite}, * {gt_zero}) should result in {gt_zero, finite}. */ r.is_finite = left.is_finite && right.is_finite; /* If one source is NaN, fmin always picks the other source. */ r.is_a_number = left.is_a_number || right.is_a_number; /* lt_zero: fmin(lt_zero, *) * | fmin(*, lt_zero) # Treat fmin as commutative * ; * * le_zero: fmin(le_zero, ne_zero) * | fmin(le_zero, gt_zero) * | fmin(le_zero, ge_zero) * | fmin(le_zero, eq_zero) * | fmin(ne_zero, le_zero) # Treat fmin as commutative * | fmin(gt_zero, le_zero) # Treat fmin as commutative * | fmin(ge_zero, le_zero) # Treat fmin as commutative * | fmin(eq_zero, le_zero) # Treat fmin as commutative * | fmin(le_zero, le_zero) * ; * * ge_zero: fmin(ge_zero, gt_zero) * | fmin(gt_zero, ge_zero) # Treat fmin as commutative * | fmin(ge_zero, ge_zero) * ; * * gt_zero: fmin(gt_zero, gt_zero) * ; * * ne_zero: fmin(ne_zero, gt_zero) * | fmin(gt_zero, ne_zero) # Treat fmin as commutative * | fmin(ne_zero, ne_zero) * ; * * eq_zero: fmin(eq_zero, ge_zero) * | fmin(eq_zero, gt_zero) * | fmin(ge_zero, eq_zero) # Treat fmin as commutative * | fmin(gt_zero, eq_zero) # Treat fmin as commutative * | fmin(eq_zero, eq_zero) * ; * * All other cases are 'unknown'. */ static const enum ssa_ranges table[last_range + 1][last_range + 1] = { /* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ /* unknown */ { _______, lt_zero, le_zero, _______, _______, _______, _______ }, /* lt_zero */ { lt_zero, lt_zero, lt_zero, lt_zero, lt_zero, lt_zero, lt_zero }, /* le_zero */ { le_zero, lt_zero, le_zero, le_zero, le_zero, le_zero, le_zero }, /* gt_zero */ { _______, lt_zero, le_zero, gt_zero, ge_zero, ne_zero, eq_zero }, /* ge_zero */ { _______, lt_zero, le_zero, ge_zero, ge_zero, _______, eq_zero }, /* ne_zero */ { _______, lt_zero, le_zero, ne_zero, _______, ne_zero, _______ }, /* eq_zero */ { _______, lt_zero, le_zero, eq_zero, eq_zero, _______, eq_zero } }; /* Treat fmin as commutative. */ ASSERT_TABLE_IS_COMMUTATIVE(table); ASSERT_TABLE_IS_DIAGONAL(table); ASSERT_UNION_OF_OTHERS_MATCHES_UNKNOWN_2_SOURCE(table); r.range = table[left.range][right.range]; /* Recall that when either value is NaN, fmin will pick the other value. * This means the result range of the fmin will either be the "ideal" * result range (calculated above) or the range of the non-NaN value. */ if (!left.is_a_number) r.range = union_ranges(r.range, right.range); if (!right.is_a_number) r.range = union_ranges(r.range, left.range); break; } case nir_op_fmul: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); const struct ssa_result_range right = analyze_expression(alu, 1, ht, nir_alu_src_type(alu, 1)); r.is_integral = left.is_integral && right.is_integral; /* x * x => ge_zero */ if (left.range != eq_zero && nir_alu_srcs_equal(alu, alu, 0, 1)) { /* Even if x > 0, the result of x*x can be zero when x is, for * example, a subnormal number. */ r.range = ge_zero; } else if (left.range != eq_zero && nir_alu_srcs_negative_equal(alu, alu, 0, 1)) { /* -x * x => le_zero. */ r.range = le_zero; } else r.range = fmul_table[left.range][right.range]; /* Mulitpliation produces NaN for X * NaN and for 0 * ±Inf. If both * operands are numbers and either both are finite or one is finite and * the other cannot be zero, then the result must be a number. */ r.is_a_number = (left.is_a_number && right.is_a_number) && ((left.is_finite && right.is_finite) || (!is_not_zero(left.range) && right.is_finite) || (left.is_finite && !is_not_zero(right.range))); break; } case nir_op_frcp: r = (struct ssa_result_range){ analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)).range, false, false, /* Various cases can result in NaN, so assume the worst. */ false /* " " " " " " " " " " */ }; break; case nir_op_mov: r = analyze_expression(alu, 0, ht, use_type); break; case nir_op_fneg: r = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); r.range = fneg_table[r.range]; break; case nir_op_fsat: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); /* fsat(NaN) = 0. */ r.is_a_number = true; r.is_finite = true; switch (left.range) { case le_zero: case lt_zero: case eq_zero: r.range = eq_zero; r.is_integral = true; break; case gt_zero: /* fsat is equivalent to fmin(fmax(X, 0.0), 1.0), so if X is not a * number, the result will be 0. */ r.range = left.is_a_number ? gt_zero : ge_zero; r.is_integral = left.is_integral; break; case ge_zero: case ne_zero: case unknown: /* Since the result must be in [0, 1], the value must be >= 0. */ r.range = ge_zero; r.is_integral = left.is_integral; break; } break; } case nir_op_fsign: r = (struct ssa_result_range){ analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)).range, true, true, /* fsign is -1, 0, or 1, even for NaN, so it must be a number. */ true /* fsign is -1, 0, or 1, even for NaN, so it must be finite. */ }; break; case nir_op_fsqrt: case nir_op_frsq: r = (struct ssa_result_range){ge_zero, false, false, false}; break; case nir_op_ffloor: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); r.is_integral = true; /* In IEEE 754, floor(NaN) is NaN, and floor(±Inf) is ±Inf. See * https://pubs.opengroup.org/onlinepubs/9699919799.2016edition/functions/floor.html */ r.is_a_number = left.is_a_number; r.is_finite = left.is_finite; if (left.is_integral || left.range == le_zero || left.range == lt_zero) r.range = left.range; else if (left.range == ge_zero || left.range == gt_zero) r.range = ge_zero; else if (left.range == ne_zero) r.range = unknown; break; } case nir_op_fceil: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); r.is_integral = true; /* In IEEE 754, ceil(NaN) is NaN, and ceil(±Inf) is ±Inf. See * https://pubs.opengroup.org/onlinepubs/9699919799.2016edition/functions/ceil.html */ r.is_a_number = left.is_a_number; r.is_finite = left.is_finite; if (left.is_integral || left.range == ge_zero || left.range == gt_zero) r.range = left.range; else if (left.range == le_zero || left.range == lt_zero) r.range = le_zero; else if (left.range == ne_zero) r.range = unknown; break; } case nir_op_ftrunc: { const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); r.is_integral = true; /* In IEEE 754, trunc(NaN) is NaN, and trunc(±Inf) is ±Inf. See * https://pubs.opengroup.org/onlinepubs/9699919799.2016edition/functions/trunc.html */ r.is_a_number = left.is_a_number; r.is_finite = left.is_finite; if (left.is_integral) r.range = left.range; else if (left.range == ge_zero || left.range == gt_zero) r.range = ge_zero; else if (left.range == le_zero || left.range == lt_zero) r.range = le_zero; else if (left.range == ne_zero) r.range = unknown; break; } case nir_op_flt: case nir_op_fge: case nir_op_feq: case nir_op_fneu: case nir_op_ilt: case nir_op_ige: case nir_op_ieq: case nir_op_ine: case nir_op_ult: case nir_op_uge: /* Boolean results are 0 or -1. */ r = (struct ssa_result_range){le_zero, false, true, false}; break; case nir_op_fpow: { /* Due to flush-to-zero semanatics of floating-point numbers with very * small mangnitudes, we can never really be sure a result will be * non-zero. * * NIR uses pow() and powf() to constant evaluate nir_op_fpow. The man * page for that function says: * * If y is 0, the result is 1.0 (even if x is a NaN). * * gt_zero: pow(*, eq_zero) * | pow(eq_zero, lt_zero) # 0^-y = +inf * | pow(eq_zero, le_zero) # 0^-y = +inf or 0^0 = 1.0 * ; * * eq_zero: pow(eq_zero, gt_zero) * ; * * ge_zero: pow(gt_zero, gt_zero) * | pow(gt_zero, ge_zero) * | pow(gt_zero, lt_zero) * | pow(gt_zero, le_zero) * | pow(gt_zero, ne_zero) * | pow(gt_zero, unknown) * | pow(ge_zero, gt_zero) * | pow(ge_zero, ge_zero) * | pow(ge_zero, lt_zero) * | pow(ge_zero, le_zero) * | pow(ge_zero, ne_zero) * | pow(ge_zero, unknown) * | pow(eq_zero, ge_zero) # 0^0 = 1.0 or 0^+y = 0.0 * | pow(eq_zero, ne_zero) # 0^-y = +inf or 0^+y = 0.0 * | pow(eq_zero, unknown) # union of all other y cases * ; * * All other cases are unknown. * * We could do better if the right operand is a constant, integral * value. */ static const enum ssa_ranges table[last_range + 1][last_range + 1] = { /* left\right unknown lt_zero le_zero gt_zero ge_zero ne_zero eq_zero */ /* unknown */ { _______, _______, _______, _______, _______, _______, gt_zero }, /* lt_zero */ { _______, _______, _______, _______, _______, _______, gt_zero }, /* le_zero */ { _______, _______, _______, _______, _______, _______, gt_zero }, /* gt_zero */ { ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, gt_zero }, /* ge_zero */ { ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, ge_zero, gt_zero }, /* ne_zero */ { _______, _______, _______, _______, _______, _______, gt_zero }, /* eq_zero */ { ge_zero, gt_zero, gt_zero, eq_zero, ge_zero, ge_zero, gt_zero }, }; const struct ssa_result_range left = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); const struct ssa_result_range right = analyze_expression(alu, 1, ht, nir_alu_src_type(alu, 1)); ASSERT_UNION_OF_DISJOINT_MATCHES_UNKNOWN_2_SOURCE(table); ASSERT_UNION_OF_EQ_AND_STRICT_INEQ_MATCHES_NONSTRICT_2_SOURCE(table); r.is_integral = left.is_integral && right.is_integral && is_not_negative(right.range); r.range = table[left.range][right.range]; /* Various cases can result in NaN, so assume the worst. */ r.is_a_number = false; break; } case nir_op_ffma: { const struct ssa_result_range first = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); const struct ssa_result_range second = analyze_expression(alu, 1, ht, nir_alu_src_type(alu, 1)); const struct ssa_result_range third = analyze_expression(alu, 2, ht, nir_alu_src_type(alu, 2)); r.is_integral = first.is_integral && second.is_integral && third.is_integral; /* Various cases can result in NaN, so assume the worst. */ r.is_a_number = false; enum ssa_ranges fmul_range; if (first.range != eq_zero && nir_alu_srcs_equal(alu, alu, 0, 1)) { /* See handling of nir_op_fmul for explanation of why ge_zero is the * range. */ fmul_range = ge_zero; } else if (first.range != eq_zero && nir_alu_srcs_negative_equal(alu, alu, 0, 1)) { /* -x * x => le_zero */ fmul_range = le_zero; } else fmul_range = fmul_table[first.range][second.range]; r.range = fadd_table[fmul_range][third.range]; break; } case nir_op_flrp: { const struct ssa_result_range first = analyze_expression(alu, 0, ht, nir_alu_src_type(alu, 0)); const struct ssa_result_range second = analyze_expression(alu, 1, ht, nir_alu_src_type(alu, 1)); const struct ssa_result_range third = analyze_expression(alu, 2, ht, nir_alu_src_type(alu, 2)); r.is_integral = first.is_integral && second.is_integral && third.is_integral; /* Various cases can result in NaN, so assume the worst. */ r.is_a_number = false; /* Decompose the flrp to first + third * (second + -first) */ const enum ssa_ranges inner_fadd_range = fadd_table[second.range][fneg_table[first.range]]; const enum ssa_ranges fmul_range = fmul_table[third.range][inner_fadd_range]; r.range = fadd_table[first.range][fmul_range]; break; } default: r = (struct ssa_result_range){unknown, false, false, false}; break; } if (r.range == eq_zero) r.is_integral = true; /* Just like isfinite(), the is_finite flag implies the value is a number. */ assert((int) r.is_finite <= (int) r.is_a_number); _mesa_hash_table_insert(ht, pack_key(alu, use_type), pack_data(r)); return r; } #undef _______ struct ssa_result_range nir_analyze_range(struct hash_table *range_ht, const nir_alu_instr *instr, unsigned src) { return analyze_expression(instr, src, range_ht, nir_alu_src_type(instr, src)); } static uint32_t bitmask(uint32_t size) { return size >= 32 ? 0xffffffffu : ((uint32_t)1 << size) - 1u; } static uint64_t mul_clamp(uint32_t a, uint32_t b) { if (a != 0 && (a * b) / a != b) return (uint64_t)UINT32_MAX + 1; else return a * b; } /* recursively gather at most "buf_size" phi/bcsel sources */ static unsigned search_phi_bcsel(nir_ssa_scalar scalar, nir_ssa_scalar *buf, unsigned buf_size, struct set *visited) { if (_mesa_set_search(visited, scalar.def)) return 0; _mesa_set_add(visited, scalar.def); if (scalar.def->parent_instr->type == nir_instr_type_phi) { nir_phi_instr *phi = nir_instr_as_phi(scalar.def->parent_instr); unsigned num_sources_left = exec_list_length(&phi->srcs); if (buf_size >= num_sources_left) { unsigned total_added = 0; nir_foreach_phi_src(src, phi) { num_sources_left--; unsigned added = search_phi_bcsel( (nir_ssa_scalar){src->src.ssa, 0}, buf + total_added, buf_size - num_sources_left, visited); assert(added <= buf_size); buf_size -= added; total_added += added; } return total_added; } } if (nir_ssa_scalar_is_alu(scalar)) { nir_op op = nir_ssa_scalar_alu_op(scalar); if ((op == nir_op_bcsel || op == nir_op_b32csel) && buf_size >= 2) { nir_ssa_scalar src0 = nir_ssa_scalar_chase_alu_src(scalar, 0); nir_ssa_scalar src1 = nir_ssa_scalar_chase_alu_src(scalar, 1); unsigned added = search_phi_bcsel(src0, buf, buf_size - 1, visited); buf_size -= added; added += search_phi_bcsel(src1, buf + added, buf_size, visited); return added; } } buf[0] = scalar; return 1; } static nir_variable * lookup_input(nir_shader *shader, unsigned driver_location) { return nir_find_variable_with_driver_location(shader, nir_var_shader_in, driver_location); } /* The config here should be generic enough to be correct on any HW. */ static const nir_unsigned_upper_bound_config default_ub_config = { .min_subgroup_size = 1u, .max_subgroup_size = UINT16_MAX, .max_workgroup_invocations = UINT16_MAX, .max_workgroup_count = {UINT16_MAX, UINT16_MAX, UINT16_MAX}, .max_workgroup_size = {UINT16_MAX, UINT16_MAX, UINT16_MAX}, .vertex_attrib_max = { UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, UINT32_MAX, }, }; uint32_t nir_unsigned_upper_bound(nir_shader *shader, struct hash_table *range_ht, nir_ssa_scalar scalar, const nir_unsigned_upper_bound_config *config) { assert(scalar.def->bit_size <= 32); if (!config) config = &default_ub_config; if (nir_ssa_scalar_is_const(scalar)) return nir_ssa_scalar_as_uint(scalar); /* keys can't be 0, so we have to add 1 to the index */ void *key = (void*)(((uintptr_t)(scalar.def->index + 1) << 4) | scalar.comp); struct hash_entry *he = _mesa_hash_table_search(range_ht, key); if (he != NULL) return (uintptr_t)he->data; uint32_t max = bitmask(scalar.def->bit_size); if (scalar.def->parent_instr->type == nir_instr_type_intrinsic) { uint32_t res = max; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(scalar.def->parent_instr); switch (intrin->intrinsic) { case nir_intrinsic_load_local_invocation_index: /* The local invocation index is used under the hood by RADV for * some non-compute-like shaders (eg. LS and NGG). These technically * run in workgroups on the HW, even though this fact is not exposed * by the API. * They can safely use the same code path here as variable sized * compute-like shader stages. */ if (!gl_shader_stage_uses_workgroup(shader->info.stage) || shader->info.workgroup_size_variable) { res = config->max_workgroup_invocations - 1; } else { res = (shader->info.workgroup_size[0] * shader->info.workgroup_size[1] * shader->info.workgroup_size[2]) - 1u; } break; case nir_intrinsic_load_local_invocation_id: if (shader->info.workgroup_size_variable) res = config->max_workgroup_size[scalar.comp] - 1u; else res = shader->info.workgroup_size[scalar.comp] - 1u; break; case nir_intrinsic_load_workgroup_id: res = config->max_workgroup_count[scalar.comp] - 1u; break; case nir_intrinsic_load_num_workgroups: res = config->max_workgroup_count[scalar.comp]; break; case nir_intrinsic_load_global_invocation_id: if (shader->info.workgroup_size_variable) { res = mul_clamp(config->max_workgroup_size[scalar.comp], config->max_workgroup_count[scalar.comp]) - 1u; } else { res = (shader->info.workgroup_size[scalar.comp] * config->max_workgroup_count[scalar.comp]) - 1u; } break; case nir_intrinsic_load_invocation_id: if (shader->info.stage == MESA_SHADER_TESS_CTRL) res = shader->info.tess.tcs_vertices_out ? (shader->info.tess.tcs_vertices_out - 1) : 511; /* Generous maximum output patch size of 512 */ break; case nir_intrinsic_load_subgroup_invocation: case nir_intrinsic_first_invocation: res = config->max_subgroup_size - 1; break; case nir_intrinsic_mbcnt_amd: { uint32_t src0 = config->max_subgroup_size - 1; uint32_t src1 = nir_unsigned_upper_bound(shader, range_ht, (nir_ssa_scalar){intrin->src[1].ssa, 0}, config); if (src0 + src1 < src0) res = max; /* overflow */ else res = src0 + src1; break; } case nir_intrinsic_load_subgroup_size: res = config->max_subgroup_size; break; case nir_intrinsic_load_subgroup_id: case nir_intrinsic_load_num_subgroups: { uint32_t workgroup_size = config->max_workgroup_invocations; if (gl_shader_stage_uses_workgroup(shader->info.stage) && !shader->info.workgroup_size_variable) { workgroup_size = shader->info.workgroup_size[0] * shader->info.workgroup_size[1] * shader->info.workgroup_size[2]; } res = DIV_ROUND_UP(workgroup_size, config->min_subgroup_size); if (intrin->intrinsic == nir_intrinsic_load_subgroup_id) res--; break; } case nir_intrinsic_load_input: { if (shader->info.stage == MESA_SHADER_VERTEX && nir_src_is_const(intrin->src[0])) { nir_variable *var = lookup_input(shader, nir_intrinsic_base(intrin)); if (var) { int loc = var->data.location - VERT_ATTRIB_GENERIC0; if (loc >= 0) res = config->vertex_attrib_max[loc]; } } break; } case nir_intrinsic_reduce: case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: { nir_op op = nir_intrinsic_reduction_op(intrin); if (op == nir_op_umin || op == nir_op_umax || op == nir_op_imin || op == nir_op_imax) res = nir_unsigned_upper_bound(shader, range_ht, (nir_ssa_scalar){intrin->src[0].ssa, 0}, config); break; } case nir_intrinsic_read_first_invocation: case nir_intrinsic_read_invocation: case nir_intrinsic_shuffle: case nir_intrinsic_shuffle_xor: case nir_intrinsic_shuffle_up: case nir_intrinsic_shuffle_down: case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: case nir_intrinsic_quad_swizzle_amd: case nir_intrinsic_masked_swizzle_amd: res = nir_unsigned_upper_bound(shader, range_ht, (nir_ssa_scalar){intrin->src[0].ssa, 0}, config); break; case nir_intrinsic_write_invocation_amd: { uint32_t src0 = nir_unsigned_upper_bound(shader, range_ht, (nir_ssa_scalar){intrin->src[0].ssa, 0}, config); uint32_t src1 = nir_unsigned_upper_bound(shader, range_ht, (nir_ssa_scalar){intrin->src[1].ssa, 0}, config); res = MAX2(src0, src1); break; } case nir_intrinsic_load_tess_rel_patch_id_amd: case nir_intrinsic_load_tcs_num_patches_amd: /* Very generous maximum: TCS/TES executed by largest possible workgroup */ res = config->max_workgroup_invocations / MAX2(shader->info.tess.tcs_vertices_out, 1u); break; default: break; } if (res != max) _mesa_hash_table_insert(range_ht, key, (void*)(uintptr_t)res); return res; } if (scalar.def->parent_instr->type == nir_instr_type_phi) { nir_cf_node *prev = nir_cf_node_prev(&scalar.def->parent_instr->block->cf_node); uint32_t res = 0; if (!prev || prev->type == nir_cf_node_block) { _mesa_hash_table_insert(range_ht, key, (void*)(uintptr_t)max); struct set *visited = _mesa_pointer_set_create(NULL); nir_ssa_scalar defs[64]; unsigned def_count = search_phi_bcsel(scalar, defs, 64, visited); _mesa_set_destroy(visited, NULL); for (unsigned i = 0; i < def_count; i++) res = MAX2(res, nir_unsigned_upper_bound(shader, range_ht, defs[i], config)); } else { nir_foreach_phi_src(src, nir_instr_as_phi(scalar.def->parent_instr)) { res = MAX2(res, nir_unsigned_upper_bound( shader, range_ht, (nir_ssa_scalar){src->src.ssa, 0}, config)); } } _mesa_hash_table_insert(range_ht, key, (void*)(uintptr_t)res); return res; } if (nir_ssa_scalar_is_alu(scalar)) { nir_op op = nir_ssa_scalar_alu_op(scalar); switch (op) { case nir_op_umin: case nir_op_imin: case nir_op_imax: case nir_op_umax: case nir_op_iand: case nir_op_ior: case nir_op_ixor: case nir_op_ishl: case nir_op_imul: case nir_op_ushr: case nir_op_ishr: case nir_op_iadd: case nir_op_umod: case nir_op_udiv: case nir_op_bcsel: case nir_op_b32csel: case nir_op_ubfe: case nir_op_bfm: case nir_op_fmul: case nir_op_extract_u8: case nir_op_extract_i8: case nir_op_extract_u16: case nir_op_extract_i16: break; case nir_op_u2u1: case nir_op_u2u8: case nir_op_u2u16: case nir_op_u2u32: case nir_op_f2u32: if (nir_ssa_scalar_chase_alu_src(scalar, 0).def->bit_size > 32) { /* If src is >32 bits, return max */ return max; } break; default: return max; } uint32_t src0 = nir_unsigned_upper_bound(shader, range_ht, nir_ssa_scalar_chase_alu_src(scalar, 0), config); uint32_t src1 = max, src2 = max; if (nir_op_infos[op].num_inputs > 1) src1 = nir_unsigned_upper_bound(shader, range_ht, nir_ssa_scalar_chase_alu_src(scalar, 1), config); if (nir_op_infos[op].num_inputs > 2) src2 = nir_unsigned_upper_bound(shader, range_ht, nir_ssa_scalar_chase_alu_src(scalar, 2), config); uint32_t res = max; switch (op) { case nir_op_umin: res = src0 < src1 ? src0 : src1; break; case nir_op_imin: case nir_op_imax: case nir_op_umax: res = src0 > src1 ? src0 : src1; break; case nir_op_iand: res = bitmask(util_last_bit64(src0)) & bitmask(util_last_bit64(src1)); break; case nir_op_ior: case nir_op_ixor: res = bitmask(util_last_bit64(src0)) | bitmask(util_last_bit64(src1)); break; case nir_op_ishl: if (util_last_bit64(src0) + src1 > scalar.def->bit_size) res = max; /* overflow */ else res = src0 << MIN2(src1, scalar.def->bit_size - 1u); break; case nir_op_imul: if (src0 != 0 && (src0 * src1) / src0 != src1) res = max; else res = src0 * src1; break; case nir_op_ushr: { nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(scalar, 1); if (nir_ssa_scalar_is_const(src1_scalar)) res = src0 >> nir_ssa_scalar_as_uint(src1_scalar); else res = src0; break; } case nir_op_ishr: { nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(scalar, 1); if (src0 <= 2147483647 && nir_ssa_scalar_is_const(src1_scalar)) res = src0 >> nir_ssa_scalar_as_uint(src1_scalar); else res = src0; break; } case nir_op_iadd: if (src0 + src1 < src0) res = max; /* overflow */ else res = src0 + src1; break; case nir_op_umod: res = src1 ? src1 - 1 : 0; break; case nir_op_udiv: { nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(scalar, 1); if (nir_ssa_scalar_is_const(src1_scalar)) res = nir_ssa_scalar_as_uint(src1_scalar) ? src0 / nir_ssa_scalar_as_uint(src1_scalar) : 0; else res = src0; break; } case nir_op_bcsel: case nir_op_b32csel: res = src1 > src2 ? src1 : src2; break; case nir_op_ubfe: res = bitmask(MIN2(src2, scalar.def->bit_size)); break; case nir_op_bfm: { nir_ssa_scalar src1_scalar = nir_ssa_scalar_chase_alu_src(scalar, 1); if (nir_ssa_scalar_is_const(src1_scalar)) { src0 = MIN2(src0, 31); src1 = nir_ssa_scalar_as_uint(src1_scalar) & 0x1fu; res = bitmask(src0) << src1; } else { src0 = MIN2(src0, 31); src1 = MIN2(src1, 31); res = bitmask(MIN2(src0 + src1, 32)); } break; } /* limited floating-point support for f2u32(fmul(load_input(), )) */ case nir_op_f2u32: /* infinity/NaN starts at 0x7f800000u, negative numbers at 0x80000000 */ if (src0 < 0x7f800000u) { float val; memcpy(&val, &src0, 4); res = (uint32_t)val; } break; case nir_op_fmul: /* infinity/NaN starts at 0x7f800000u, negative numbers at 0x80000000 */ if (src0 < 0x7f800000u && src1 < 0x7f800000u) { float src0_f, src1_f; memcpy(&src0_f, &src0, 4); memcpy(&src1_f, &src1, 4); /* not a proper rounding-up multiplication, but should be good enough */ float max_f = ceilf(src0_f) * ceilf(src1_f); memcpy(&res, &max_f, 4); } break; case nir_op_u2u1: case nir_op_u2u8: case nir_op_u2u16: case nir_op_u2u32: res = MIN2(src0, max); break; case nir_op_sad_u8x4: res = src2 + 4 * 255; break; case nir_op_extract_u8: res = MIN2(src0, UINT8_MAX); break; case nir_op_extract_i8: res = (src0 >= 0x80) ? max : MIN2(src0, INT8_MAX); break; case nir_op_extract_u16: res = MIN2(src0, UINT16_MAX); break; case nir_op_extract_i16: res = (src0 >= 0x8000) ? max : MIN2(src0, INT16_MAX); break; default: res = max; break; } _mesa_hash_table_insert(range_ht, key, (void*)(uintptr_t)res); return res; } return max; } bool nir_addition_might_overflow(nir_shader *shader, struct hash_table *range_ht, nir_ssa_scalar ssa, unsigned const_val, const nir_unsigned_upper_bound_config *config) { if (nir_ssa_scalar_is_alu(ssa)) { nir_op alu_op = nir_ssa_scalar_alu_op(ssa); /* iadd(imul(a, #b), #c) */ if (alu_op == nir_op_imul || alu_op == nir_op_ishl) { nir_ssa_scalar mul_src0 = nir_ssa_scalar_chase_alu_src(ssa, 0); nir_ssa_scalar mul_src1 = nir_ssa_scalar_chase_alu_src(ssa, 1); uint32_t stride = 1; if (nir_ssa_scalar_is_const(mul_src0)) stride = nir_ssa_scalar_as_uint(mul_src0); else if (nir_ssa_scalar_is_const(mul_src1)) stride = nir_ssa_scalar_as_uint(mul_src1); if (alu_op == nir_op_ishl) stride = 1u << (stride % 32u); if (!stride || const_val <= UINT32_MAX - (UINT32_MAX / stride * stride)) return false; } /* iadd(iand(a, #b), #c) */ if (alu_op == nir_op_iand) { nir_ssa_scalar and_src0 = nir_ssa_scalar_chase_alu_src(ssa, 0); nir_ssa_scalar and_src1 = nir_ssa_scalar_chase_alu_src(ssa, 1); uint32_t mask = 0xffffffff; if (nir_ssa_scalar_is_const(and_src0)) mask = nir_ssa_scalar_as_uint(and_src0); else if (nir_ssa_scalar_is_const(and_src1)) mask = nir_ssa_scalar_as_uint(and_src1); if (mask == 0 || const_val < (1u << (ffs(mask) - 1))) return false; } } uint32_t ub = nir_unsigned_upper_bound(shader, range_ht, ssa, config); return const_val + ub < const_val; } static uint64_t ssa_def_bits_used(nir_ssa_def *def, int recur) { uint64_t bits_used = 0; uint64_t all_bits = BITFIELD64_MASK(def->bit_size); /* Querying the bits used from a vector is too hard of a question to * answer. Return the conservative answer that all bits are used. To * handle this, the function would need to be extended to be a query of a * single component of the vector. That would also necessary to fully * handle the 'num_components > 1' inside the loop below. * * FINISHME: This restriction will eventually need to be restricted to be * useful for hardware that uses u16vec2 as the native 16-bit integer type. */ if (def->num_components > 1) return all_bits; /* Limit recursion */ if (recur-- <= 0) return all_bits; nir_foreach_use(src, def) { switch (src->parent_instr->type) { case nir_instr_type_alu: { nir_alu_instr *use_alu = nir_instr_as_alu(src->parent_instr); unsigned src_idx = container_of(src, nir_alu_src, src) - use_alu->src; /* If a user of the value produces a vector result, return the * conservative answer that all bits are used. It is possible to * answer this query by looping over the components used. For example, * * vec4 32 ssa_5 = load_const(0x0000f000, 0x00000f00, 0x000000f0, 0x0000000f) * ... * vec4 32 ssa_8 = iand ssa_7.xxxx, ssa_5 * * could conceivably return 0x0000ffff when queyring the bits used of * ssa_7. This is unlikely to be worth the effort because the * question can eventually answered after the shader has been * scalarized. */ if (use_alu->dest.dest.ssa.num_components > 1) return all_bits; switch (use_alu->op) { case nir_op_u2u8: case nir_op_i2i8: bits_used |= 0xff; break; case nir_op_u2u16: case nir_op_i2i16: bits_used |= all_bits & 0xffff; break; case nir_op_u2u32: case nir_op_i2i32: bits_used |= all_bits & 0xffffffff; break; case nir_op_extract_u8: case nir_op_extract_i8: if (src_idx == 0 && nir_src_is_const(use_alu->src[1].src)) { unsigned chunk = nir_src_comp_as_uint(use_alu->src[1].src, use_alu->src[1].swizzle[0]); bits_used |= 0xffull << (chunk * 8); break; } else { return all_bits; } case nir_op_extract_u16: case nir_op_extract_i16: if (src_idx == 0 && nir_src_is_const(use_alu->src[1].src)) { unsigned chunk = nir_src_comp_as_uint(use_alu->src[1].src, use_alu->src[1].swizzle[0]); bits_used |= 0xffffull << (chunk * 16); break; } else { return all_bits; } case nir_op_ishl: case nir_op_ishr: case nir_op_ushr: if (src_idx == 1) { bits_used |= (nir_src_bit_size(use_alu->src[0].src) - 1); break; } else { return all_bits; } case nir_op_iand: assert(src_idx < 2); if (nir_src_is_const(use_alu->src[1 - src_idx].src)) { uint64_t u64 = nir_src_comp_as_uint(use_alu->src[1 - src_idx].src, use_alu->src[1 - src_idx].swizzle[0]); bits_used |= u64; break; } else { return all_bits; } case nir_op_ior: assert(src_idx < 2); if (nir_src_is_const(use_alu->src[1 - src_idx].src)) { uint64_t u64 = nir_src_comp_as_uint(use_alu->src[1 - src_idx].src, use_alu->src[1 - src_idx].swizzle[0]); bits_used |= all_bits & ~u64; break; } else { return all_bits; } default: /* We don't know what this op does */ return all_bits; } break; } case nir_instr_type_intrinsic: { nir_intrinsic_instr *use_intrin = nir_instr_as_intrinsic(src->parent_instr); unsigned src_idx = src - use_intrin->src; switch (use_intrin->intrinsic) { case nir_intrinsic_read_invocation: case nir_intrinsic_shuffle: case nir_intrinsic_shuffle_up: case nir_intrinsic_shuffle_down: case nir_intrinsic_shuffle_xor: case nir_intrinsic_quad_broadcast: case nir_intrinsic_quad_swap_horizontal: case nir_intrinsic_quad_swap_vertical: case nir_intrinsic_quad_swap_diagonal: if (src_idx == 0) { assert(use_intrin->dest.is_ssa); bits_used |= ssa_def_bits_used(&use_intrin->dest.ssa, recur); } else { if (use_intrin->intrinsic == nir_intrinsic_quad_broadcast) { bits_used |= 3; } else { /* Subgroups larger than 128 are not a thing */ bits_used |= 127; } } break; case nir_intrinsic_reduce: case nir_intrinsic_inclusive_scan: case nir_intrinsic_exclusive_scan: assert(src_idx == 0); switch (nir_intrinsic_reduction_op(use_intrin)) { case nir_op_iadd: case nir_op_imul: case nir_op_ior: case nir_op_iand: case nir_op_ixor: bits_used |= ssa_def_bits_used(&use_intrin->dest.ssa, recur); break; default: return all_bits; } break; default: /* We don't know what this op does */ return all_bits; } break; } case nir_instr_type_phi: { nir_phi_instr *use_phi = nir_instr_as_phi(src->parent_instr); bits_used |= ssa_def_bits_used(&use_phi->dest.ssa, recur); break; } default: return all_bits; } /* If we've somehow shown that all our bits are used, we're done */ assert((bits_used & ~all_bits) == 0); if (bits_used == all_bits) return all_bits; } return bits_used; } uint64_t nir_ssa_def_bits_used(nir_ssa_def *def) { return ssa_def_bits_used(def, 2); }