/* * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * * Authors: * Jason Ekstrand (jason@jlekstrand.net) * */ #include #include "nir/nir_builtin_builder.h" #include "vtn_private.h" #include "GLSL.std.450.h" #define M_PIf ((float) M_PI) #define M_PI_2f ((float) M_PI_2) #define M_PI_4f ((float) M_PI_4) static nir_ssa_def * build_mat2_det(nir_builder *b, nir_ssa_def *col[2]) { unsigned swiz[2] = {1, 0 }; nir_ssa_def *p = nir_fmul(b, col[0], nir_swizzle(b, col[1], swiz, 2)); return nir_fsub(b, nir_channel(b, p, 0), nir_channel(b, p, 1)); } static nir_ssa_def * build_mat3_det(nir_builder *b, nir_ssa_def *col[3]) { unsigned yzx[3] = {1, 2, 0 }; unsigned zxy[3] = {2, 0, 1 }; nir_ssa_def *prod0 = nir_fmul(b, col[0], nir_fmul(b, nir_swizzle(b, col[1], yzx, 3), nir_swizzle(b, col[2], zxy, 3))); nir_ssa_def *prod1 = nir_fmul(b, col[0], nir_fmul(b, nir_swizzle(b, col[1], zxy, 3), nir_swizzle(b, col[2], yzx, 3))); nir_ssa_def *diff = nir_fsub(b, prod0, prod1); return nir_fadd(b, nir_channel(b, diff, 0), nir_fadd(b, nir_channel(b, diff, 1), nir_channel(b, diff, 2))); } static nir_ssa_def * build_mat4_det(nir_builder *b, nir_ssa_def **col) { nir_ssa_def *subdet[4]; for (unsigned i = 0; i < 4; i++) { unsigned swiz[3]; for (unsigned j = 0; j < 3; j++) swiz[j] = j + (j >= i); nir_ssa_def *subcol[3]; subcol[0] = nir_swizzle(b, col[1], swiz, 3); subcol[1] = nir_swizzle(b, col[2], swiz, 3); subcol[2] = nir_swizzle(b, col[3], swiz, 3); subdet[i] = build_mat3_det(b, subcol); } nir_ssa_def *prod = nir_fmul(b, col[0], nir_vec(b, subdet, 4)); return nir_fadd(b, nir_fsub(b, nir_channel(b, prod, 0), nir_channel(b, prod, 1)), nir_fsub(b, nir_channel(b, prod, 2), nir_channel(b, prod, 3))); } static nir_ssa_def * build_mat_det(struct vtn_builder *b, struct vtn_ssa_value *src) { unsigned size = glsl_get_vector_elements(src->type); nir_ssa_def *cols[4]; for (unsigned i = 0; i < size; i++) cols[i] = src->elems[i]->def; switch(size) { case 2: return build_mat2_det(&b->nb, cols); case 3: return build_mat3_det(&b->nb, cols); case 4: return build_mat4_det(&b->nb, cols); default: vtn_fail("Invalid matrix size"); } } /* Computes the determinate of the submatrix given by taking src and * removing the specified row and column. */ static nir_ssa_def * build_mat_subdet(struct nir_builder *b, struct vtn_ssa_value *src, unsigned size, unsigned row, unsigned col) { assert(row < size && col < size); if (size == 2) { return nir_channel(b, src->elems[1 - col]->def, 1 - row); } else { /* Swizzle to get all but the specified row */ unsigned swiz[NIR_MAX_VEC_COMPONENTS] = {0}; for (unsigned j = 0; j < 3; j++) swiz[j] = j + (j >= row); /* Grab all but the specified column */ nir_ssa_def *subcol[3]; for (unsigned j = 0; j < size; j++) { if (j != col) { subcol[j - (j > col)] = nir_swizzle(b, src->elems[j]->def, swiz, size - 1); } } if (size == 3) { return build_mat2_det(b, subcol); } else { assert(size == 4); return build_mat3_det(b, subcol); } } } static struct vtn_ssa_value * matrix_inverse(struct vtn_builder *b, struct vtn_ssa_value *src) { nir_ssa_def *adj_col[4]; unsigned size = glsl_get_vector_elements(src->type); /* Build up an adjugate matrix */ for (unsigned c = 0; c < size; c++) { nir_ssa_def *elem[4]; for (unsigned r = 0; r < size; r++) { elem[r] = build_mat_subdet(&b->nb, src, size, c, r); if ((r + c) % 2) elem[r] = nir_fneg(&b->nb, elem[r]); } adj_col[c] = nir_vec(&b->nb, elem, size); } nir_ssa_def *det_inv = nir_frcp(&b->nb, build_mat_det(b, src)); struct vtn_ssa_value *val = vtn_create_ssa_value(b, src->type); for (unsigned i = 0; i < size; i++) val->elems[i]->def = nir_fmul(&b->nb, adj_col[i], det_inv); return val; } /** * Approximate asin(x) by the piecewise formula: * for |x| < 0.5, asin~(x) = x * (1 + x²(pS0 + x²(pS1 + x²*pS2)) / (1 + x²*qS1)) * for |x| ≥ 0.5, asin~(x) = sign(x) * (π/2 - sqrt(1 - |x|) * (π/2 + |x|(π/4 - 1 + |x|(p0 + |x|p1)))) * * The latter is correct to first order at x=0 and x=±1 regardless of the p * coefficients but can be made second-order correct at both ends by selecting * the fit coefficients appropriately. Different p coefficients can be used * in the asin and acos implementation to minimize some relative error metric * in each case. */ static nir_ssa_def * build_asin(nir_builder *b, nir_ssa_def *x, float p0, float p1, bool piecewise) { if (x->bit_size == 16) { /* The polynomial approximation isn't precise enough to meet half-float * precision requirements. Alternatively, we could implement this using * the formula: * * asin(x) = atan2(x, sqrt(1 - x*x)) * * But that is very expensive, so instead we just do the polynomial * approximation in 32-bit math and then we convert the result back to * 16-bit. */ return nir_f2f16(b, build_asin(b, nir_f2f32(b, x), p0, p1, piecewise)); } nir_ssa_def *one = nir_imm_floatN_t(b, 1.0f, x->bit_size); nir_ssa_def *half = nir_imm_floatN_t(b, 0.5f, x->bit_size); nir_ssa_def *abs_x = nir_fabs(b, x); nir_ssa_def *p0_plus_xp1 = nir_ffma_imm12(b, abs_x, p1, p0); nir_ssa_def *expr_tail = nir_ffma_imm2(b, abs_x, nir_ffma_imm2(b, abs_x, p0_plus_xp1, M_PI_4f - 1.0f), M_PI_2f); nir_ssa_def *result0 = nir_fmul(b, nir_fsign(b, x), nir_a_minus_bc(b, nir_imm_floatN_t(b, M_PI_2f, x->bit_size), nir_fsqrt(b, nir_fsub(b, one, abs_x)), expr_tail)); if (piecewise) { /* approximation for |x| < 0.5 */ const float pS0 = 1.6666586697e-01f; const float pS1 = -4.2743422091e-02f; const float pS2 = -8.6563630030e-03f; const float qS1 = -7.0662963390e-01f; nir_ssa_def *x2 = nir_fmul(b, x, x); nir_ssa_def *p = nir_fmul(b, x2, nir_ffma_imm2(b, x2, nir_ffma_imm12(b, x2, pS2, pS1), pS0)); nir_ssa_def *q = nir_ffma_imm1(b, x2, qS1, one); nir_ssa_def *result1 = nir_ffma(b, x, nir_fdiv(b, p, q), x); return nir_bcsel(b, nir_flt(b, abs_x, half), result1, result0); } else { return result0; } } static nir_op vtn_nir_alu_op_for_spirv_glsl_opcode(struct vtn_builder *b, enum GLSLstd450 opcode, unsigned execution_mode, bool *exact) { *exact = false; switch (opcode) { case GLSLstd450Round: return nir_op_fround_even; case GLSLstd450RoundEven: return nir_op_fround_even; case GLSLstd450Trunc: return nir_op_ftrunc; case GLSLstd450FAbs: return nir_op_fabs; case GLSLstd450SAbs: return nir_op_iabs; case GLSLstd450FSign: return nir_op_fsign; case GLSLstd450SSign: return nir_op_isign; case GLSLstd450Floor: return nir_op_ffloor; case GLSLstd450Ceil: return nir_op_fceil; case GLSLstd450Fract: return nir_op_ffract; case GLSLstd450Sin: return nir_op_fsin; case GLSLstd450Cos: return nir_op_fcos; case GLSLstd450Pow: return nir_op_fpow; case GLSLstd450Exp2: return nir_op_fexp2; case GLSLstd450Log2: return nir_op_flog2; case GLSLstd450Sqrt: return nir_op_fsqrt; case GLSLstd450InverseSqrt: return nir_op_frsq; case GLSLstd450NMin: *exact = true; return nir_op_fmin; case GLSLstd450FMin: return nir_op_fmin; case GLSLstd450UMin: return nir_op_umin; case GLSLstd450SMin: return nir_op_imin; case GLSLstd450NMax: *exact = true; return nir_op_fmax; case GLSLstd450FMax: return nir_op_fmax; case GLSLstd450UMax: return nir_op_umax; case GLSLstd450SMax: return nir_op_imax; case GLSLstd450FMix: return nir_op_flrp; case GLSLstd450Fma: return nir_op_ffma; case GLSLstd450Ldexp: return nir_op_ldexp; case GLSLstd450FindILsb: return nir_op_find_lsb; case GLSLstd450FindSMsb: return nir_op_ifind_msb; case GLSLstd450FindUMsb: return nir_op_ufind_msb; /* Packing/Unpacking functions */ case GLSLstd450PackSnorm4x8: return nir_op_pack_snorm_4x8; case GLSLstd450PackUnorm4x8: return nir_op_pack_unorm_4x8; case GLSLstd450PackSnorm2x16: return nir_op_pack_snorm_2x16; case GLSLstd450PackUnorm2x16: return nir_op_pack_unorm_2x16; case GLSLstd450PackHalf2x16: return nir_op_pack_half_2x16; case GLSLstd450PackDouble2x32: return nir_op_pack_64_2x32; case GLSLstd450UnpackSnorm4x8: return nir_op_unpack_snorm_4x8; case GLSLstd450UnpackUnorm4x8: return nir_op_unpack_unorm_4x8; case GLSLstd450UnpackSnorm2x16: return nir_op_unpack_snorm_2x16; case GLSLstd450UnpackUnorm2x16: return nir_op_unpack_unorm_2x16; case GLSLstd450UnpackHalf2x16: if (execution_mode & FLOAT_CONTROLS_DENORM_FLUSH_TO_ZERO_FP16) return nir_op_unpack_half_2x16_flush_to_zero; else return nir_op_unpack_half_2x16; case GLSLstd450UnpackDouble2x32: return nir_op_unpack_64_2x32; default: vtn_fail("No NIR equivalent"); } } #define NIR_IMM_FP(n, v) (nir_imm_floatN_t(n, v, src[0]->bit_size)) static void handle_glsl450_alu(struct vtn_builder *b, enum GLSLstd450 entrypoint, const uint32_t *w, unsigned count) { struct nir_builder *nb = &b->nb; const struct glsl_type *dest_type = vtn_get_type(b, w[1])->type; /* Collect the various SSA sources */ unsigned num_inputs = count - 5; nir_ssa_def *src[3] = { NULL, }; for (unsigned i = 0; i < num_inputs; i++) { /* These are handled specially below */ if (vtn_untyped_value(b, w[i + 5])->value_type == vtn_value_type_pointer) continue; src[i] = vtn_get_nir_ssa(b, w[i + 5]); } struct vtn_ssa_value *dest = vtn_create_ssa_value(b, dest_type); vtn_handle_no_contraction(b, vtn_untyped_value(b, w[2])); switch (entrypoint) { case GLSLstd450Radians: dest->def = nir_radians(nb, src[0]); break; case GLSLstd450Degrees: dest->def = nir_degrees(nb, src[0]); break; case GLSLstd450Tan: dest->def = nir_ftan(nb, src[0]); break; case GLSLstd450Modf: { nir_ssa_def *inf = nir_imm_floatN_t(&b->nb, INFINITY, src[0]->bit_size); nir_ssa_def *sign_bit = nir_imm_intN_t(&b->nb, (uint64_t)1 << (src[0]->bit_size - 1), src[0]->bit_size); nir_ssa_def *sign = nir_fsign(nb, src[0]); nir_ssa_def *abs = nir_fabs(nb, src[0]); /* NaN input should produce a NaN results, and ±Inf input should provide * ±0 result. The fmul(sign(x), ffract(x)) calculation will already * produce the expected NaN. To get ±0, directly compare for equality * with Inf instead of using fisfinite (which is false for NaN). */ dest->def = nir_bcsel(nb, nir_ieq(nb, abs, inf), nir_iand(nb, src[0], sign_bit), nir_fmul(nb, sign, nir_ffract(nb, abs))); struct vtn_pointer *i_ptr = vtn_value(b, w[6], vtn_value_type_pointer)->pointer; struct vtn_ssa_value *whole = vtn_create_ssa_value(b, i_ptr->type->type); whole->def = nir_fmul(nb, sign, nir_ffloor(nb, abs)); vtn_variable_store(b, whole, i_ptr, 0); break; } case GLSLstd450ModfStruct: { nir_ssa_def *inf = nir_imm_floatN_t(&b->nb, INFINITY, src[0]->bit_size); nir_ssa_def *sign_bit = nir_imm_intN_t(&b->nb, (uint64_t)1 << (src[0]->bit_size - 1), src[0]->bit_size); nir_ssa_def *sign = nir_fsign(nb, src[0]); nir_ssa_def *abs = nir_fabs(nb, src[0]); vtn_assert(glsl_type_is_struct_or_ifc(dest_type)); /* See GLSLstd450Modf for explanation of the Inf and NaN handling. */ dest->elems[0]->def = nir_bcsel(nb, nir_ieq(nb, abs, inf), nir_iand(nb, src[0], sign_bit), nir_fmul(nb, sign, nir_ffract(nb, abs))); dest->elems[1]->def = nir_fmul(nb, sign, nir_ffloor(nb, abs)); break; } case GLSLstd450Step: { /* The SPIR-V Extended Instructions for GLSL spec says: * * Result is 0.0 if x < edge; otherwise result is 1.0. * * Here src[1] is x, and src[0] is edge. The direct implementation is * * bcsel(src[1] < src[0], 0.0, 1.0) * * This is effectively b2f(!(src1 < src0)). Previously this was * implemented using sge(src1, src0), but that produces incorrect * results for NaN. Instead, we use the identity b2f(!x) = 1 - b2f(x). */ const bool exact = nb->exact; nb->exact = true; nir_ssa_def *cmp = nir_slt(nb, src[1], src[0]); nb->exact = exact; dest->def = nir_fsub(nb, nir_imm_floatN_t(nb, 1.0f, cmp->bit_size), cmp); break; } case GLSLstd450Length: dest->def = nir_fast_length(nb, src[0]); break; case GLSLstd450Distance: dest->def = nir_fast_distance(nb, src[0], src[1]); break; case GLSLstd450Normalize: dest->def = nir_fast_normalize(nb, src[0]); break; case GLSLstd450Exp: dest->def = nir_fexp(nb, src[0]); break; case GLSLstd450Log: dest->def = nir_flog(nb, src[0]); break; case GLSLstd450FClamp: dest->def = nir_fclamp(nb, src[0], src[1], src[2]); break; case GLSLstd450NClamp: nb->exact = true; dest->def = nir_fclamp(nb, src[0], src[1], src[2]); nb->exact = false; break; case GLSLstd450UClamp: dest->def = nir_uclamp(nb, src[0], src[1], src[2]); break; case GLSLstd450SClamp: dest->def = nir_iclamp(nb, src[0], src[1], src[2]); break; case GLSLstd450Cross: { dest->def = nir_cross3(nb, src[0], src[1]); break; } case GLSLstd450SmoothStep: { dest->def = nir_smoothstep(nb, src[0], src[1], src[2]); break; } case GLSLstd450FaceForward: dest->def = nir_bcsel(nb, nir_flt(nb, nir_fdot(nb, src[2], src[1]), NIR_IMM_FP(nb, 0.0)), src[0], nir_fneg(nb, src[0])); break; case GLSLstd450Reflect: /* I - 2 * dot(N, I) * N */ dest->def = nir_a_minus_bc(nb, src[0], src[1], nir_fmul(nb, nir_fdot(nb, src[0], src[1]), NIR_IMM_FP(nb, 2.0))); break; case GLSLstd450Refract: { nir_ssa_def *I = src[0]; nir_ssa_def *N = src[1]; nir_ssa_def *eta = src[2]; nir_ssa_def *n_dot_i = nir_fdot(nb, N, I); nir_ssa_def *one = NIR_IMM_FP(nb, 1.0); nir_ssa_def *zero = NIR_IMM_FP(nb, 0.0); /* According to the SPIR-V and GLSL specs, eta is always a float * regardless of the type of the other operands. However in practice it * seems that if you try to pass it a float then glslang will just * promote it to a double and generate invalid SPIR-V. In order to * support a hypothetical fixed version of glslang we’ll promote eta to * double if the other operands are double also. */ if (I->bit_size != eta->bit_size) { nir_op conversion_op = nir_type_conversion_op(nir_type_float | eta->bit_size, nir_type_float | I->bit_size, nir_rounding_mode_undef); eta = nir_build_alu(nb, conversion_op, eta, NULL, NULL, NULL); } /* k = 1.0 - eta * eta * (1.0 - dot(N, I) * dot(N, I)) */ nir_ssa_def *k = nir_a_minus_bc(nb, one, eta, nir_fmul(nb, eta, nir_a_minus_bc(nb, one, n_dot_i, n_dot_i))); nir_ssa_def *result = nir_a_minus_bc(nb, nir_fmul(nb, eta, I), nir_ffma(nb, eta, n_dot_i, nir_fsqrt(nb, k)), N); /* XXX: bcsel, or if statement? */ dest->def = nir_bcsel(nb, nir_flt(nb, k, zero), zero, result); break; } case GLSLstd450Sinh: /* 0.5 * (e^x - e^(-x)) */ dest->def = nir_fmul_imm(nb, nir_fsub(nb, nir_fexp(nb, src[0]), nir_fexp(nb, nir_fneg(nb, src[0]))), 0.5f); break; case GLSLstd450Cosh: /* 0.5 * (e^x + e^(-x)) */ dest->def = nir_fmul_imm(nb, nir_fadd(nb, nir_fexp(nb, src[0]), nir_fexp(nb, nir_fneg(nb, src[0]))), 0.5f); break; case GLSLstd450Tanh: { /* tanh(x) := (e^x - e^(-x)) / (e^x + e^(-x)) * * We clamp x to [-10, +10] to avoid precision problems. When x > 10, * e^x dominates the sum, e^(-x) is lost and tanh(x) is 1.0 for 32 bit * floating point. * * For 16-bit precision this we clamp x to [-4.2, +4.2]. */ const uint32_t bit_size = src[0]->bit_size; const double clamped_x = bit_size > 16 ? 10.0 : 4.2; nir_ssa_def *x = nir_fclamp(nb, src[0], nir_imm_floatN_t(nb, -clamped_x, bit_size), nir_imm_floatN_t(nb, clamped_x, bit_size)); /* The clamping will filter out NaN values causing an incorrect result. * The comparison is carefully structured to get NaN result for NaN and * get -0 for -0. * * result = abs(s) > 0.0 ? ... : s; */ const bool exact = nb->exact; nb->exact = true; nir_ssa_def *is_regular = nir_flt(nb, nir_imm_floatN_t(nb, 0, bit_size), nir_fabs(nb, src[0])); /* The extra 1.0*s ensures that subnormal inputs are flushed to zero * when that is selected by the shader. */ nir_ssa_def *flushed = nir_fmul(nb, src[0], nir_imm_floatN_t(nb, 1.0, bit_size)); nb->exact = exact; dest->def = nir_bcsel(nb, is_regular, nir_fdiv(nb, nir_fsub(nb, nir_fexp(nb, x), nir_fexp(nb, nir_fneg(nb, x))), nir_fadd(nb, nir_fexp(nb, x), nir_fexp(nb, nir_fneg(nb, x)))), flushed); break; } case GLSLstd450Asinh: dest->def = nir_fmul(nb, nir_fsign(nb, src[0]), nir_flog(nb, nir_fadd(nb, nir_fabs(nb, src[0]), nir_fsqrt(nb, nir_ffma_imm2(nb, src[0], src[0], 1.0f))))); break; case GLSLstd450Acosh: dest->def = nir_flog(nb, nir_fadd(nb, src[0], nir_fsqrt(nb, nir_ffma_imm2(nb, src[0], src[0], -1.0f)))); break; case GLSLstd450Atanh: { nir_ssa_def *one = nir_imm_floatN_t(nb, 1.0, src[0]->bit_size); dest->def = nir_fmul_imm(nb, nir_flog(nb, nir_fdiv(nb, nir_fadd(nb, src[0], one), nir_fsub(nb, one, src[0]))), 0.5f); break; } case GLSLstd450Asin: dest->def = build_asin(nb, src[0], 0.086566724, -0.03102955, true); break; case GLSLstd450Acos: dest->def = nir_fsub(nb, nir_imm_floatN_t(nb, M_PI_2f, src[0]->bit_size), build_asin(nb, src[0], 0.08132463, -0.02363318, false)); break; case GLSLstd450Atan: dest->def = nir_atan(nb, src[0]); break; case GLSLstd450Atan2: dest->def = nir_atan2(nb, src[0], src[1]); break; case GLSLstd450Frexp: { dest->def = nir_frexp_sig(nb, src[0]); struct vtn_pointer *i_ptr = vtn_value(b, w[6], vtn_value_type_pointer)->pointer; struct vtn_ssa_value *exp = vtn_create_ssa_value(b, i_ptr->type->type); exp->def = nir_frexp_exp(nb, src[0]); vtn_variable_store(b, exp, i_ptr, 0); break; } case GLSLstd450FrexpStruct: { vtn_assert(glsl_type_is_struct_or_ifc(dest_type)); dest->elems[0]->def = nir_frexp_sig(nb, src[0]); dest->elems[1]->def = nir_frexp_exp(nb, src[0]); break; } default: { unsigned execution_mode = b->shader->info.float_controls_execution_mode; bool exact; nir_op op = vtn_nir_alu_op_for_spirv_glsl_opcode(b, entrypoint, execution_mode, &exact); /* don't override explicit decoration */ b->nb.exact |= exact; dest->def = nir_build_alu(&b->nb, op, src[0], src[1], src[2], NULL); break; } } b->nb.exact = false; vtn_push_ssa_value(b, w[2], dest); } static void handle_glsl450_interpolation(struct vtn_builder *b, enum GLSLstd450 opcode, const uint32_t *w, unsigned count) { nir_intrinsic_op op; switch (opcode) { case GLSLstd450InterpolateAtCentroid: op = nir_intrinsic_interp_deref_at_centroid; break; case GLSLstd450InterpolateAtSample: op = nir_intrinsic_interp_deref_at_sample; break; case GLSLstd450InterpolateAtOffset: op = nir_intrinsic_interp_deref_at_offset; break; default: vtn_fail("Invalid opcode"); } nir_intrinsic_instr *intrin = nir_intrinsic_instr_create(b->nb.shader, op); struct vtn_pointer *ptr = vtn_value(b, w[5], vtn_value_type_pointer)->pointer; nir_deref_instr *deref = vtn_pointer_to_deref(b, ptr); /* If the value we are interpolating has an index into a vector then * interpolate the vector and index the result of that instead. This is * necessary because the index will get generated as a series of nir_bcsel * instructions so it would no longer be an input variable. */ const bool vec_array_deref = deref->deref_type == nir_deref_type_array && glsl_type_is_vector(nir_deref_instr_parent(deref)->type); nir_deref_instr *vec_deref = NULL; if (vec_array_deref) { vec_deref = deref; deref = nir_deref_instr_parent(deref); } intrin->src[0] = nir_src_for_ssa(&deref->dest.ssa); switch (opcode) { case GLSLstd450InterpolateAtCentroid: break; case GLSLstd450InterpolateAtSample: case GLSLstd450InterpolateAtOffset: intrin->src[1] = nir_src_for_ssa(vtn_get_nir_ssa(b, w[6])); break; default: vtn_fail("Invalid opcode"); } intrin->num_components = glsl_get_vector_elements(deref->type); nir_ssa_dest_init(&intrin->instr, &intrin->dest, glsl_get_vector_elements(deref->type), glsl_get_bit_size(deref->type), NULL); nir_builder_instr_insert(&b->nb, &intrin->instr); nir_ssa_def *def = &intrin->dest.ssa; if (vec_array_deref) def = nir_vector_extract(&b->nb, def, vec_deref->arr.index.ssa); vtn_push_nir_ssa(b, w[2], def); } bool vtn_handle_glsl450_instruction(struct vtn_builder *b, SpvOp ext_opcode, const uint32_t *w, unsigned count) { switch ((enum GLSLstd450)ext_opcode) { case GLSLstd450Determinant: { vtn_push_nir_ssa(b, w[2], build_mat_det(b, vtn_ssa_value(b, w[5]))); break; } case GLSLstd450MatrixInverse: { vtn_push_ssa_value(b, w[2], matrix_inverse(b, vtn_ssa_value(b, w[5]))); break; } case GLSLstd450InterpolateAtCentroid: case GLSLstd450InterpolateAtSample: case GLSLstd450InterpolateAtOffset: handle_glsl450_interpolation(b, (enum GLSLstd450)ext_opcode, w, count); break; default: handle_glsl450_alu(b, (enum GLSLstd450)ext_opcode, w, count); } return true; }