# # Copyright (C) 2020 Collabora, Ltd. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import sys import itertools from bifrost_isa import parse_instructions, opname_to_c, expand_states from mako.template import Template instructions = parse_instructions(sys.argv[1], include_unused = True) # Constructs a reserved mask for a derived to cull impossible encodings def reserved_mask(derived): ((pos, width), opts) = derived reserved = [x is None for x in opts] mask = sum([(y << x) for x, y in enumerate(reserved)]) return (pos, width, mask) def reserved_masks(op): masks = [reserved_mask(m) for m in op[2].get("derived", [])] return [m for m in masks if m[2] != 0] # To decode instructions, pattern match based on the rules: # # 1. Execution unit (FMA or ADD) must line up. # 2. All exact bits must match. # 3. No fields should be reserved in a legal encoding. # 4. Tiebreaker: Longer exact masks (greater unsigned bitwise inverses) win. # # To implement, filter the execution unit and check for exact bits in # descending order of exact mask length. Check for reserved fields per # candidate and succeed if it matches. # found. def decode_op(instructions, is_fma): # Filter out the desired execution unit options = [n for n in instructions.keys() if (n[0] == '*') == is_fma] # Sort by exact masks, descending MAX_MASK = (1 << (23 if is_fma else 20)) - 1 options.sort(key = lambda n: (MAX_MASK ^ instructions[n][2]["exact"][0])) # Map to what we need to template mapped = [(opname_to_c(op), instructions[op][2]["exact"], reserved_masks(instructions[op])) for op in options] # Generate checks in order template = """void bi_disasm_${unit}(FILE *fp, unsigned bits, struct bifrost_regs *srcs, struct bifrost_regs *next_regs, unsigned staging_register, unsigned branch_offset, struct bi_constants *consts, bool last) { fputs(" ", fp); % for (i, (name, (emask, ebits), derived)) in enumerate(options): % if len(derived) > 0: ${"else " if i > 0 else ""}if (unlikely(((bits & ${hex(emask)}) == ${hex(ebits)}) % for (pos, width, reserved) in derived: && !(${hex(reserved)} & (1 << _BITS(bits, ${pos}, ${width}))) % endfor )) % else: ${"else " if i > 0 else ""}if (unlikely(((bits & ${hex(emask)}) == ${hex(ebits)}))) % endif bi_disasm_${name}(fp, bits, srcs, next_regs, staging_register, branch_offset, consts, last); % endfor else fprintf(fp, "INSTR_INVALID_ENC ${unit} %X", bits); fputs("\\n", fp); }""" return Template(template).render(options = mapped, unit = "fma" if is_fma else "add") # Decoding emits a series of function calls to e.g. `fma_fadd_v2f16`. We need to # emit functions to disassemble a single decoded instruction in a particular # state. Sync prototypes to avoid moves when calling. disasm_op_template = Template("""static void bi_disasm_${c_name}(FILE *fp, unsigned bits, struct bifrost_regs *srcs, struct bifrost_regs *next_regs, unsigned staging_register, unsigned branch_offset, struct bi_constants *consts, bool last) { ${body.strip()} } """) lut_template_only = Template(""" static const char *${field}[] = { ${", ".join(['"' + x + '"' for x in table])} }; """) # Given a lookup table written logically, generate an accessor lut_template = Template(""" static const char *${field}_table[] = { ${", ".join(['"' + x + '"' for x in table])} }; const char *${field} = ${field}_table[_BITS(bits, ${pos}, ${width})]; """) # Helpers for decoding follow. pretty_mods applies dot syntax def pretty_mods(opts, default): return [('.' + (opt or 'reserved') if opt != default else '') for opt in opts] # Recursively searches for the set of free variables required by an expression def find_context_keys_expr(expr): if isinstance(expr, list): return set.union(*[find_context_keys_expr(x) for x in expr[1:]]) elif expr[0] == '#': return set() else: return set([expr]) def find_context_keys(desc, test): keys = set() if len(test) > 0: keys |= find_context_keys_expr(test) for i, (_, vals) in enumerate(desc.get('derived', [])): for j, val in enumerate(vals): if val is not None: keys |= find_context_keys_expr(val) return keys # Compiles a logic expression to Python expression, ctx -> { T, F } EVALUATORS = { 'and': ' and ', 'or': ' or ', 'eq': ' == ', 'neq': ' != ', } def compile_derived_inner(expr, keys): if expr == []: return 'True' elif expr is None or expr[0] == 'alias': return 'False' elif isinstance(expr, list): args = [compile_derived_inner(arg, keys) for arg in expr[1:]] return '(' + EVALUATORS[expr[0]].join(args) + ')' elif expr[0] == '#': return "'{}'".format(expr[1:]) elif expr == 'ordering': return expr else: return "ctx[{}]".format(keys.index(expr)) def compile_derived(expr, keys): return eval('lambda ctx, ordering: ' + compile_derived_inner(expr, keys)) # Generate all possible combinations of values and evaluate the derived values # by bruteforce evaluation to generate a forward mapping (values -> deriveds) def evaluate_forward_derived(vals, ctx, ordering): for j, expr in enumerate(vals): if expr(ctx, ordering): return j return None def evaluate_forward(keys, derivf, testf, ctx, ordering): if not testf(ctx, ordering): return None deriv = [] for vals in derivf: evaled = evaluate_forward_derived(vals, ctx, ordering) if evaled is None: return None deriv.append(evaled) return deriv def evaluate_forwards(keys, derivf, testf, mod_vals, ordered): orderings = ["lt", "gt"] if ordered else [None] return [[evaluate_forward(keys, derivf, testf, i, order) for i in itertools.product(*mod_vals)] for order in orderings] # Invert the forward mapping (values -> deriveds) of finite sets to produce a # backwards mapping (deriveds -> values), suitable for disassembly. This is # possible since the encoding is unambiguous, so this mapping is a bijection # (after reserved/impossible encodings) def invert_lut(value_size, forward, derived, mod_map, keys, mod_vals): backwards = [None] * (1 << value_size) for (i, deriveds), ctx in zip(enumerate(forward), itertools.product(*mod_vals)): # Skip reserved if deriveds == None: continue shift = 0 param = 0 for j, ((x, width), y) in enumerate(derived): param += (deriveds[j] << shift) shift += width assert(param not in backwards) backwards[param] = ctx return backwards # Compute the value of all indirectly specified modifiers by using the # backwards mapping (deriveds -> values) as a run-time lookup table. def build_lut(mnemonic, desc, test): # Construct the system facts = [] mod_map = {} for ((name, pos, width), default, values) in desc.get('modifiers', []): mod_map[name] = (width, values, pos, default) derived = desc.get('derived', []) # Find the keys and impose an order key_set = find_context_keys(desc, test) ordered = 'ordering' in key_set key_set.discard('ordering') keys = list(key_set) # Evaluate the deriveds for every possible state, forming a (state -> deriveds) map testf = compile_derived(test, keys) derivf = [[compile_derived(expr, keys) for expr in v] for (_, v) in derived] mod_vals = [mod_map[k][1] for k in keys] forward = evaluate_forwards(keys, derivf, testf, mod_vals, ordered) # Now invert that map to get a (deriveds -> state) map value_size = sum([width for ((x, width), y) in derived]) backwards = [invert_lut(value_size, f, derived, mod_map, keys, mod_vals) for f in forward] # From that map, we can generate LUTs output = "" if ordered: output += "bool ordering = (_BITS(bits, {}, 3) > _BITS(bits, {}, 3));\n".format(desc["srcs"][0][0], desc["srcs"][1][0]) for j, key in enumerate(keys): # Only generate tables for indirect specifiers if mod_map[key][2] is not None: continue idx_parts = [] shift = 0 for ((pos, width), _) in derived: idx_parts.append("(_BITS(bits, {}, {}) << {})".format(pos, width, shift)) shift += width built_idx = (" | ".join(idx_parts)) if len(idx_parts) > 0 else "0" default = mod_map[key][3] if ordered: for i, order in enumerate(backwards): options = [ctx[j] if ctx is not None and ctx[j] is not None else "reserved" for ctx in order] output += lut_template_only.render(field = key + "_" + str(i), table = pretty_mods(options, default)) output += " const char *{} = ordering ? {}_1[{}] : {}_0[{}];\n".format(key, key, built_idx, key, built_idx) else: options = [ctx[j] if ctx is not None and ctx[j] is not None else "reserved" for ctx in backwards[0]] output += lut_template_only.render(field = key + "_table", table = pretty_mods(options, default)) output += " const char *{} = {}_table[{}];\n".format(key, key, built_idx) return output def disasm_mod(mod, skip_mods): if mod[0][0] in skip_mods: return '' else: return ' fputs({}, fp);\n'.format(mod[0][0]) def disasm_op(name, op): (mnemonic, test, desc) = op is_fma = mnemonic[0] == '*' # Modifiers may be either direct (pos is not None) or indirect (pos is # None). If direct, we just do the bit lookup. If indirect, we use a LUT. body = "" skip_mods = [] body += build_lut(mnemonic, desc, test) for ((mod, pos, width), default, opts) in desc.get('modifiers', []): if pos is not None: body += lut_template.render(field = mod, table = pretty_mods(opts, default), pos = pos, width = width) + "\n" # Mnemonic, followed by modifiers body += ' fputs("{}", fp);\n'.format(mnemonic) srcs = desc.get('srcs', []) for mod in desc.get('modifiers', []): # Skip per-source until next block if mod[0][0][-1] in "0123" and int(mod[0][0][-1]) < len(srcs): continue body += disasm_mod(mod, skip_mods) body += ' fputs(" ", fp);\n' body += ' bi_disasm_dest_{}(fp, next_regs, last);\n'.format('fma' if is_fma else 'add') # Next up, each source. Source modifiers are inserterd here for i, (pos, mask) in enumerate(srcs): body += ' fputs(", ", fp);\n' body += ' dump_src(fp, _BITS(bits, {}, 3), *srcs, branch_offset, consts, {});\n'.format(pos, "true" if is_fma else "false") # Error check if needed if (mask != 0xFF): body += ' if (!({} & (1 << _BITS(bits, {}, 3)))) fputs("(INVALID)", fp);\n'.format(hex(mask), pos, 3) # Print modifiers suffixed with this src number (e.g. abs0 for src0) for mod in desc.get('modifiers', []): if mod[0][0][-1] == str(i): body += disasm_mod(mod, skip_mods) # And each immediate for (imm, pos, width) in desc.get('immediates', []): body += ' fprintf(fp, ", {}:%u", _BITS(bits, {}, {}));\n'.format(imm, pos, width) # Attach a staging register if one is used if desc.get('staging'): body += ' fprintf(fp, ", @r%u", staging_register);\n' return disasm_op_template.render(c_name = opname_to_c(name), body = body) print('#include "util/macros.h"') print('#include "disassemble.h"') states = expand_states(instructions) print('#define _BITS(bits, pos, width) (((bits) >> (pos)) & ((1 << (width)) - 1))') for st in states: print(disasm_op(st, states[st])) print(decode_op(states, True)) print(decode_op(states, False))