/* * © Copyright 2017-2018 Alyssa Rosenzweig * © Copyright 2017-2018 Connor Abbott * © Copyright 2017-2018 Lyude Paul * © Copyright2019 Collabora, Ltd. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #ifndef __PANFROST_JOB_H__ #define __PANFROST_JOB_H__ #include #include #include typedef uint8_t u8; typedef uint16_t u16; typedef uint32_t u32; typedef uint64_t u64; typedef uint64_t mali_ptr; /* Compressed per-pixel formats. Each of these formats expands to one to four * floating-point or integer numbers, as defined by the OpenGL specification. * There are various places in OpenGL where the user can specify a compressed * format in memory, which all use the same 8-bit enum in the various * descriptors, although different hardware units support different formats. */ /* The top 3 bits specify how the bits of each component are interpreted. */ /* e.g. ETC2_RGB8 */ #define MALI_FORMAT_COMPRESSED (0 << 5) /* e.g. R11F_G11F_B10F */ #define MALI_FORMAT_SPECIAL (2 << 5) /* signed normalized, e.g. RGBA8_SNORM */ #define MALI_FORMAT_SNORM (3 << 5) /* e.g. RGBA8UI */ #define MALI_FORMAT_UINT (4 << 5) /* e.g. RGBA8 and RGBA32F */ #define MALI_FORMAT_UNORM (5 << 5) /* e.g. RGBA8I and RGBA16F */ #define MALI_FORMAT_SINT (6 << 5) /* These formats seem to largely duplicate the others. They're used at least * for Bifrost framebuffer output. */ #define MALI_FORMAT_SPECIAL2 (7 << 5) #define MALI_EXTRACT_TYPE(fmt) ((fmt) & 0xe0) /* If the high 3 bits are 3 to 6 these two bits say how many components * there are. */ #define MALI_NR_CHANNELS(n) ((n - 1) << 3) #define MALI_EXTRACT_CHANNELS(fmt) ((((fmt) >> 3) & 3) + 1) /* If the high 3 bits are 3 to 6, then the low 3 bits say how big each * component is, except the special MALI_CHANNEL_FLOAT which overrides what the * bits mean. */ #define MALI_CHANNEL_4 2 #define MALI_CHANNEL_8 3 #define MALI_CHANNEL_16 4 #define MALI_CHANNEL_32 5 /* For MALI_FORMAT_SINT it means a half-float (e.g. RG16F). For * MALI_FORMAT_UNORM, it means a 32-bit float. */ #define MALI_CHANNEL_FLOAT 7 #define MALI_EXTRACT_BITS(fmt) (fmt & 0x7) #define MALI_EXTRACT_INDEX(pixfmt) (((pixfmt) >> 12) & 0xFF) /* The raw Midgard blend payload can either be an equation or a shader * address, depending on the context */ /* * Mali Attributes * * This structure lets the attribute unit compute the address of an attribute * given the vertex and instance ID. Unfortunately, the way this works is * rather complicated when instancing is enabled. * * To explain this, first we need to explain how compute and vertex threads are * dispatched. This is a guess (although a pretty firm guess!) since the * details are mostly hidden from the driver, except for attribute instancing. * When a quad is dispatched, it receives a single, linear index. However, we * need to translate that index into a (vertex id, instance id) pair, or a * (local id x, local id y, local id z) triple for compute shaders (although * vertex shaders and compute shaders are handled almost identically). * Focusing on vertex shaders, one option would be to do: * * vertex_id = linear_id % num_vertices * instance_id = linear_id / num_vertices * * but this involves a costly division and modulus by an arbitrary number. * Instead, we could pad num_vertices. We dispatch padded_num_vertices * * num_instances threads instead of num_vertices * num_instances, which results * in some "extra" threads with vertex_id >= num_vertices, which we have to * discard. The more we pad num_vertices, the more "wasted" threads we * dispatch, but the division is potentially easier. * * One straightforward choice is to pad num_vertices to the next power of two, * which means that the division and modulus are just simple bit shifts and * masking. But the actual algorithm is a bit more complicated. The thread * dispatcher has special support for dividing by 3, 5, 7, and 9, in addition * to dividing by a power of two. This is possibly using the technique * described in patent US20170010862A1. As a result, padded_num_vertices can be * 1, 3, 5, 7, or 9 times a power of two. This results in less wasted threads, * since we need less padding. * * padded_num_vertices is picked by the hardware. The driver just specifies the * actual number of vertices. At least for Mali G71, the first few cases are * given by: * * num_vertices | padded_num_vertices * 3 | 4 * 4-7 | 8 * 8-11 | 12 (3 * 4) * 12-15 | 16 * 16-19 | 20 (5 * 4) * * Note that padded_num_vertices is a multiple of four (presumably because * threads are dispatched in groups of 4). Also, padded_num_vertices is always * at least one more than num_vertices, which seems like a quirk of the * hardware. For larger num_vertices, the hardware uses the following * algorithm: using the binary representation of num_vertices, we look at the * most significant set bit as well as the following 3 bits. Let n be the * number of bits after those 4 bits. Then we set padded_num_vertices according * to the following table: * * high bits | padded_num_vertices * 1000 | 9 * 2^n * 1001 | 5 * 2^(n+1) * 101x | 3 * 2^(n+2) * 110x | 7 * 2^(n+1) * 111x | 2^(n+4) * * For example, if num_vertices = 70 is passed to glDraw(), its binary * representation is 1000110, so n = 3 and the high bits are 1000, and * therefore padded_num_vertices = 9 * 2^3 = 72. * * The attribute unit works in terms of the original linear_id. if * num_instances = 1, then they are the same, and everything is simple. * However, with instancing things get more complicated. There are four * possible modes, two of them we can group together: * * 1. Use the linear_id directly. Only used when there is no instancing. * * 2. Use the linear_id modulo a constant. This is used for per-vertex * attributes with instancing enabled by making the constant equal * padded_num_vertices. Because the modulus is always padded_num_vertices, this * mode only supports a modulus that is a power of 2 times 1, 3, 5, 7, or 9. * The shift field specifies the power of two, while the extra_flags field * specifies the odd number. If shift = n and extra_flags = m, then the modulus * is (2m + 1) * 2^n. As an example, if num_vertices = 70, then as computed * above, padded_num_vertices = 9 * 2^3, so we should set extra_flags = 4 and * shift = 3. Note that we must exactly follow the hardware algorithm used to * get padded_num_vertices in order to correctly implement per-vertex * attributes. * * 3. Divide the linear_id by a constant. In order to correctly implement * instance divisors, we have to divide linear_id by padded_num_vertices times * to user-specified divisor. So first we compute padded_num_vertices, again * following the exact same algorithm that the hardware uses, then multiply it * by the GL-level divisor to get the hardware-level divisor. This case is * further divided into two more cases. If the hardware-level divisor is a * power of two, then we just need to shift. The shift amount is specified by * the shift field, so that the hardware-level divisor is just 2^shift. * * If it isn't a power of two, then we have to divide by an arbitrary integer. * For that, we use the well-known technique of multiplying by an approximation * of the inverse. The driver must compute the magic multiplier and shift * amount, and then the hardware does the multiplication and shift. The * hardware and driver also use the "round-down" optimization as described in * http://ridiculousfish.com/files/faster_unsigned_division_by_constants.pdf. * The hardware further assumes the multiplier is between 2^31 and 2^32, so the * high bit is implicitly set to 1 even though it is set to 0 by the driver -- * presumably this simplifies the hardware multiplier a little. The hardware * first multiplies linear_id by the multiplier and takes the high 32 bits, * then applies the round-down correction if extra_flags = 1, then finally * shifts right by the shift field. * * There are some differences between ridiculousfish's algorithm and the Mali * hardware algorithm, which means that the reference code from ridiculousfish * doesn't always produce the right constants. Mali does not use the pre-shift * optimization, since that would make a hardware implementation slower (it * would have to always do the pre-shift, multiply, and post-shift operations). * It also forces the multplier to be at least 2^31, which means that the * exponent is entirely fixed, so there is no trial-and-error. Altogether, * given the divisor d, the algorithm the driver must follow is: * * 1. Set shift = floor(log2(d)). * 2. Compute m = ceil(2^(shift + 32) / d) and e = 2^(shift + 32) % d. * 3. If e <= 2^shift, then we need to use the round-down algorithm. Set * magic_divisor = m - 1 and extra_flags = 1. * 4. Otherwise, set magic_divisor = m and extra_flags = 0. */ /* Purposeful off-by-one in width, height fields. For example, a (64, 64) * texture is stored as (63, 63) in these fields. This adjusts for that. * There's an identical pattern in the framebuffer descriptor. Even vertex * count fields work this way, hence the generic name -- integral fields that * are strictly positive generally need this adjustment. */ #define MALI_POSITIVE(dim) (dim - 1) /* Mali hardware can texture up to 65536 x 65536 x 65536 and render up to 16384 * x 16384, but 8192 x 8192 should be enough for anyone. The OpenGL game * "Cathedral" requires a texture of width 8192 to start. */ #define MAX_MIP_LEVELS (14) /* Used for lod encoding. Thanks @urjaman for pointing out these routines can * be cleaned up a lot. */ #define DECODE_FIXED_16(x) ((float) (x / 256.0)) static inline int16_t FIXED_16(float x, bool allow_negative) { /* Clamp inputs, accounting for float error */ float max_lod = (32.0 - (1.0 / 512.0)); float min_lod = allow_negative ? -max_lod : 0.0; x = ((x > max_lod) ? max_lod : ((x < min_lod) ? min_lod : x)); return (int) (x * 256.0); } #endif /* __PANFROST_JOB_H__ */