# # Copyright (C) 2018 Alyssa Rosenzweig # Copyright (C) 2019-2020 Collabora, Ltd. # # Copyright (C) 2016 Intel Corporation # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice (including the next # paragraph) shall be included in all copies or substantial portions of the # Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. import argparse import sys import math a = 'a' b = 'b' c = 'c' algebraic = [ # Allows us to schedule as a multiply by 2 (('~fadd', ('fadd', a, b), a), ('fadd', ('fadd', a, a), b)), ] algebraic_late = [ # ineg must be lowered late, but only for integers; floats will try to # have modifiers attached... hence why this has to be here rather than # a more standard lower_negate approach (('ineg', a), ('isub', 0, a)), # Likewise we want fsub lowered but not isub (('fsub', a, b), ('fadd', a, ('fneg', b))), # These two special-cases save space/an op than the actual csel op + # scheduler flexibility (('b32csel', a, 'b@32', 0), ('iand', a, b)), (('b32csel', a, 0, 'b@32'), ('iand', ('inot', a), b)), # Fuse sat_signed. This should probably be shared with Bifrost (('~fmin', ('fmax', a, -1.0), 1.0), ('fsat_signed_mali', a)), (('~fmax', ('fmin', a, 1.0), -1.0), ('fsat_signed_mali', a)), # Fuse clamp_positive. This should probably be shared with Utgard/bifrost (('fmax', a, 0.0), ('fclamp_pos_mali', a)), (('ishl', 'a@16', b), ('u2u16', ('ishl', ('u2u32', a), b))), (('ishr', 'a@16', b), ('i2i16', ('ishr', ('i2i32', a), b))), (('ushr', 'a@16', b), ('u2u16', ('ushr', ('u2u32', a), b))), (('ishl', 'a@8', b), ('u2u8', ('u2u16', ('ishl', ('u2u32', ('u2u16', a)), b)))), (('ishr', 'a@8', b), ('i2i8', ('i2i16', ('ishr', ('i2i32', ('i2i16', a)), b)))), (('ushr', 'a@8', b), ('u2u8', ('u2u16', ('ushr', ('u2u32', ('u2u16', a)), b)))), # Canonical form. The scheduler will convert back if it makes sense. (('fmul', a, 2.0), ('fadd', a, a)) ] # Size conversion is redundant to Midgard but needed for NIR, and writing this # lowering in MIR would be painful without a competent builder, so eat the # extra instruction for sz in ('8', '16', '32'): converted = ('u2u32', a) if sz != '32' else a algebraic_late += [(('ufind_msb', 'a@' + sz), ('isub', 31, ('uclz', converted)))] # Midgard is able to type convert down by only one "step" per instruction; if # NIR wants more than one step, we need to break up into multiple instructions. # Nevertheless, we can do both a size step and a floating/int step at once. converts = [] for op in ('u2u', 'i2i', 'f2f', 'i2f', 'u2f', 'f2i', 'f2u'): srcsz_max = 64 dstsz_max = 64 # 8 bit float doesn't exist srcsz_min = 8 if op[0] != 'f' else 16 dstsz_min = 8 if op[2] != 'f' else 16 dstsz = dstsz_min # Iterate over all possible destination and source sizes while dstsz <= dstsz_max: srcsz = srcsz_min while srcsz <= srcsz_max: # Size converter lowering is only needed if src and dst sizes are # spaced by a factor > 2. if srcsz != dstsz and (srcsz * 2 != dstsz and srcsz != dstsz * 2): cursz = srcsz rule = a # When converting down we first do the type conversion followed # by one or more size conversions. When converting up, we do # the type conversion at the end. This way we don't have to # deal with the fact that f2f8 doesn't exists. sizeconvop = op[0] + '2' + op[0] if srcsz < dstsz else op[2] + '2' + op[2] if srcsz > dstsz and op[0] != op[2]: rule = (op + str(int(cursz)), rule) while cursz != dstsz: cursz = cursz / 2 if dstsz < srcsz else cursz * 2 rule = (sizeconvop + str(int(cursz)), rule) if srcsz < dstsz and op[0] != op[2]: rule = (op + str(int(cursz)), rule) converts += [((op + str(int(dstsz)), 'a@' + str(int(srcsz))), rule)] srcsz *= 2 dstsz *= 2 # Try to force constants to the right constant_switch = [ # fge gets flipped to fle, so we invert to keep the order (('fge', 'a', '#b'), (('inot', ('flt', a, b)))), (('fge32', 'a', '#b'), (('inot', ('flt32', a, b)))), (('ige32', 'a', '#b'), (('inot', ('ilt32', a, b)))), (('uge32', 'a', '#b'), (('inot', ('ult32', a, b)))), # fge gets mapped to fle with a flip (('flt32', '#a', 'b'), ('inot', ('fge32', a, b))), (('ilt32', '#a', 'b'), ('inot', ('ige32', a, b))), (('ult32', '#a', 'b'), ('inot', ('uge32', a, b))) ] # ..since the above switching happens after algebraic stuff is done cancel_inot = [ (('inot', ('inot', a)), a) ] # Midgard scales fsin/fcos arguments by pi. # Pass must be run only once, after the main loop scale_trig = [ (('fsin', a), ('fsin', ('fdiv', a, math.pi))), (('fcos', a), ('fcos', ('fdiv', a, math.pi))), ] def main(): parser = argparse.ArgumentParser() parser.add_argument('-p', '--import-path', required=True) args = parser.parse_args() sys.path.insert(0, args.import_path) run() def run(): import nir_algebraic # pylint: disable=import-error print('#include "midgard_nir.h"') print(nir_algebraic.AlgebraicPass("midgard_nir_lower_algebraic_early", algebraic).render()) print(nir_algebraic.AlgebraicPass("midgard_nir_lower_algebraic_late", algebraic_late + converts + constant_switch).render()) print(nir_algebraic.AlgebraicPass("midgard_nir_scale_trig", scale_trig).render()) print(nir_algebraic.AlgebraicPass("midgard_nir_cancel_inot", cancel_inot).render()) if __name__ == '__main__': main()